机器学习与软件漏洞检测:适用性分析和概念系统综合

N. Leonov, M. Buinevich
{"title":"机器学习与软件漏洞检测:适用性分析和概念系统综合","authors":"N. Leonov, M. Buinevich","doi":"10.31854/1813-324x-2023-9-6-83-94","DOIUrl":null,"url":null,"abstract":"The article is devoted to the searching for vulnerabilities in software problem, as well as the possibilities of application of such a promising area in information technology as machine learning. For this purpose, a review of scientific publications in this area from Russian and foreign citation databases is made. A comparative analysis of the review's results was made according to the following criteria: publication year, application field, idea, solved problem of machine learning, degree of realization of its models and methods; for each criterion basic conclusions were drawn. As a result, 7 principles of building a new conceptual system of searching for vulnerabilities in software with the help of machine learning are proposed, the short meaning of which is as follows: program's multilateral study, combination of known methods, the use of machine learning in each method and algorithm of its management, the possibility of correcting the expert's work, storing information in a database and its synchronization with external, advisory nature of the found vulnerabilities; single software application usage. Based on the stated principles, a graphical scheme of such a system has been developed.","PeriodicalId":298883,"journal":{"name":"Proceedings of Telecommunication Universities","volume":"20 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning vs Software Vulnerability Detection: Applicability Analysis and Conceptual System Synthesis\",\"authors\":\"N. Leonov, M. Buinevich\",\"doi\":\"10.31854/1813-324x-2023-9-6-83-94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to the searching for vulnerabilities in software problem, as well as the possibilities of application of such a promising area in information technology as machine learning. For this purpose, a review of scientific publications in this area from Russian and foreign citation databases is made. A comparative analysis of the review's results was made according to the following criteria: publication year, application field, idea, solved problem of machine learning, degree of realization of its models and methods; for each criterion basic conclusions were drawn. As a result, 7 principles of building a new conceptual system of searching for vulnerabilities in software with the help of machine learning are proposed, the short meaning of which is as follows: program's multilateral study, combination of known methods, the use of machine learning in each method and algorithm of its management, the possibility of correcting the expert's work, storing information in a database and its synchronization with external, advisory nature of the found vulnerabilities; single software application usage. Based on the stated principles, a graphical scheme of such a system has been developed.\",\"PeriodicalId\":298883,\"journal\":{\"name\":\"Proceedings of Telecommunication Universities\",\"volume\":\"20 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Telecommunication Universities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31854/1813-324x-2023-9-6-83-94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Telecommunication Universities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31854/1813-324x-2023-9-6-83-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章专门讨论软件问题中的漏洞搜索,以及应用机器学习这一信息技术中前景广阔的领域的可能性。为此,我们查阅了俄罗斯和国外引文数据库中该领域的科学出版物。根据以下标准对审查结果进行了比较分析:出版年份、应用领域、想法、机器学习已解决的问题、其模型和方法的实现程度;针对每个标准得出了基本结论。因此,提出了在机器学习的帮助下构建软件漏洞搜索新概念系统的 7 项原则,其简要含义如下:程序的多边研究、已知方法的组合、在每种方法中使用机器学习及其管理算法、修正专家工作的可能性、将信息存储在数据库中并与外部同步、所发现漏洞的咨询性质、单一软件应用程序的使用。基于上述原则,我们开发了这样一个系统的图形方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning vs Software Vulnerability Detection: Applicability Analysis and Conceptual System Synthesis
The article is devoted to the searching for vulnerabilities in software problem, as well as the possibilities of application of such a promising area in information technology as machine learning. For this purpose, a review of scientific publications in this area from Russian and foreign citation databases is made. A comparative analysis of the review's results was made according to the following criteria: publication year, application field, idea, solved problem of machine learning, degree of realization of its models and methods; for each criterion basic conclusions were drawn. As a result, 7 principles of building a new conceptual system of searching for vulnerabilities in software with the help of machine learning are proposed, the short meaning of which is as follows: program's multilateral study, combination of known methods, the use of machine learning in each method and algorithm of its management, the possibility of correcting the expert's work, storing information in a database and its synchronization with external, advisory nature of the found vulnerabilities; single software application usage. Based on the stated principles, a graphical scheme of such a system has been developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信