{"title":"光敏过程的生物物理学和量子限制","authors":"L. Barsanti, P. Gualtieri","doi":"10.3390/encyclopedia4010003","DOIUrl":null,"url":null,"abstract":"This entry paper is an attempt to explain how the discrete nature of light (energy discreteness in the form of photons) constrains the light detection process all along the evolutionary path, in the not-fully-understood photoreceptive systems of unicellular microorganisms (nonimaging systems) and in the complex and well-known visual system of higher organisms (imaging systems). All these systems are perfect examples of the interplay between physics and biology, i.e., they are the perfect topic of research for biophysicists. The paper describes how photoreceptive and visual systems achieve the goal of photon counting, which information is conveyed by a finite number of photons, and which noise factors limit light-detecting processes.","PeriodicalId":72905,"journal":{"name":"Encyclopedia","volume":"23 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biophysics and Quantum Limitation of Photoreceptive Processes\",\"authors\":\"L. Barsanti, P. Gualtieri\",\"doi\":\"10.3390/encyclopedia4010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This entry paper is an attempt to explain how the discrete nature of light (energy discreteness in the form of photons) constrains the light detection process all along the evolutionary path, in the not-fully-understood photoreceptive systems of unicellular microorganisms (nonimaging systems) and in the complex and well-known visual system of higher organisms (imaging systems). All these systems are perfect examples of the interplay between physics and biology, i.e., they are the perfect topic of research for biophysicists. The paper describes how photoreceptive and visual systems achieve the goal of photon counting, which information is conveyed by a finite number of photons, and which noise factors limit light-detecting processes.\",\"PeriodicalId\":72905,\"journal\":{\"name\":\"Encyclopedia\",\"volume\":\"23 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/encyclopedia4010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/encyclopedia4010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biophysics and Quantum Limitation of Photoreceptive Processes
This entry paper is an attempt to explain how the discrete nature of light (energy discreteness in the form of photons) constrains the light detection process all along the evolutionary path, in the not-fully-understood photoreceptive systems of unicellular microorganisms (nonimaging systems) and in the complex and well-known visual system of higher organisms (imaging systems). All these systems are perfect examples of the interplay between physics and biology, i.e., they are the perfect topic of research for biophysicists. The paper describes how photoreceptive and visual systems achieve the goal of photon counting, which information is conveyed by a finite number of photons, and which noise factors limit light-detecting processes.