利用机器学习模型根据合金化学元素预测铝的机械性能

Prima Fierza Saputra, D. Leni, F. Earnestly
{"title":"利用机器学习模型根据合金化学元素预测铝的机械性能","authors":"Prima Fierza Saputra, D. Leni, F. Earnestly","doi":"10.37859/jst.v10i2.5809","DOIUrl":null,"url":null,"abstract":"This study designs and compares optimal machine learning models for predicting the mechanical properties of alloyed aluminum with code 1050 (A91050) based on the percentage composition of chemical elements using the software RapidMiner with decision tree and Random Forest algorithms. The aim is to develop a data-driven predictive model with high accuracy to minimize the need for physical testing on aluminum with various compositional variations. The machine learning modeling in this study involves nine input variables, comprising chemical elements such as Al, Mg, Zn, Ti, Cu, Mn, Cr, Fe, Si, and two output or target variables, YS and TS (yield strength and tensile strength). Additionally, a Heatmap correlation is employed to observe the correlations between the chemical elements and the mechanical properties of the alloyed aluminum. The comparison of these algorithms reveals that Random Forest (RF) outperforms other algorithms in predicting YS with a Mean Absolute Error (MAE) of 7.157, Root Mean Square Error (RMSE) of 11.248, and a coefficient of determination (SC) of 0.977. On the other hand, Random Forest (RF) also exhibits better performance in predicting TS with an MAE of 29.296, RMSE of 42.382, and SC value of 0.443.","PeriodicalId":17743,"journal":{"name":"Jurnal Surya Teknika","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediksi Sifat Mekanik Aluminium Berdasarkan Unsur Kimia Paduan Menggunakan Model Machine Learning\",\"authors\":\"Prima Fierza Saputra, D. Leni, F. Earnestly\",\"doi\":\"10.37859/jst.v10i2.5809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study designs and compares optimal machine learning models for predicting the mechanical properties of alloyed aluminum with code 1050 (A91050) based on the percentage composition of chemical elements using the software RapidMiner with decision tree and Random Forest algorithms. The aim is to develop a data-driven predictive model with high accuracy to minimize the need for physical testing on aluminum with various compositional variations. The machine learning modeling in this study involves nine input variables, comprising chemical elements such as Al, Mg, Zn, Ti, Cu, Mn, Cr, Fe, Si, and two output or target variables, YS and TS (yield strength and tensile strength). Additionally, a Heatmap correlation is employed to observe the correlations between the chemical elements and the mechanical properties of the alloyed aluminum. The comparison of these algorithms reveals that Random Forest (RF) outperforms other algorithms in predicting YS with a Mean Absolute Error (MAE) of 7.157, Root Mean Square Error (RMSE) of 11.248, and a coefficient of determination (SC) of 0.977. On the other hand, Random Forest (RF) also exhibits better performance in predicting TS with an MAE of 29.296, RMSE of 42.382, and SC value of 0.443.\",\"PeriodicalId\":17743,\"journal\":{\"name\":\"Jurnal Surya Teknika\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Surya Teknika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37859/jst.v10i2.5809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Surya Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37859/jst.v10i2.5809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用带有决策树和随机森林算法的 RapidMiner 软件,设计并比较了基于化学元素百分比成分预测代码为 1050 的合金铝(A91050)机械性能的最佳机器学习模型。目的是开发一种数据驱动的高精度预测模型,以尽量减少对各种成分变化的铝进行物理测试的需要。本研究中的机器学习模型涉及九个输入变量,包括 Al、Mg、Zn、Ti、Cu、Mn、Cr、Fe、Si 等化学元素,以及两个输出或目标变量 YS 和 TS(屈服强度和抗拉强度)。此外,还采用了热图相关性来观察化学元素与合金铝机械性能之间的相关性。对这些算法进行比较后发现,随机森林(RF)在预测 YS 方面优于其他算法,其平均绝对误差(MAE)为 7.157,均方根误差(RMSE)为 11.248,判定系数(SC)为 0.977。另一方面,随机森林(RF)在预测 TS 方面也有更好的表现,其 MAE 为 29.296,RMSE 为 42.382,SC 值为 0.443。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediksi Sifat Mekanik Aluminium Berdasarkan Unsur Kimia Paduan Menggunakan Model Machine Learning
This study designs and compares optimal machine learning models for predicting the mechanical properties of alloyed aluminum with code 1050 (A91050) based on the percentage composition of chemical elements using the software RapidMiner with decision tree and Random Forest algorithms. The aim is to develop a data-driven predictive model with high accuracy to minimize the need for physical testing on aluminum with various compositional variations. The machine learning modeling in this study involves nine input variables, comprising chemical elements such as Al, Mg, Zn, Ti, Cu, Mn, Cr, Fe, Si, and two output or target variables, YS and TS (yield strength and tensile strength). Additionally, a Heatmap correlation is employed to observe the correlations between the chemical elements and the mechanical properties of the alloyed aluminum. The comparison of these algorithms reveals that Random Forest (RF) outperforms other algorithms in predicting YS with a Mean Absolute Error (MAE) of 7.157, Root Mean Square Error (RMSE) of 11.248, and a coefficient of determination (SC) of 0.977. On the other hand, Random Forest (RF) also exhibits better performance in predicting TS with an MAE of 29.296, RMSE of 42.382, and SC value of 0.443.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信