与群和半群有关的矩阵

Q4 Mathematics
D.I. Bezushchak
{"title":"与群和半群有关的矩阵","authors":"D.I. Bezushchak","doi":"10.15421/242309","DOIUrl":null,"url":null,"abstract":"Matroid is defined as a pair $(X,\\mathcal{I})$, where $X$ is a nonempty finite set, and $\\mathcal{I}$ is a nonempty set of subsets of  $X$ that satisfies the Hereditary Axiom and the Augmentation Axiom. The paper investigates for which semigroups (primarily finite) $S$, the pair $(\\widehat{S}, \\mathcal{I})$ will be a matroid.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matroids related to groups and semigroups\",\"authors\":\"D.I. Bezushchak\",\"doi\":\"10.15421/242309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matroid is defined as a pair $(X,\\\\mathcal{I})$, where $X$ is a nonempty finite set, and $\\\\mathcal{I}$ is a nonempty set of subsets of  $X$ that satisfies the Hereditary Axiom and the Augmentation Axiom. The paper investigates for which semigroups (primarily finite) $S$, the pair $(\\\\widehat{S}, \\\\mathcal{I})$ will be a matroid.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/242309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

matroid 定义为一对 $(X,\mathcal{I})$,其中 $X$ 是一个非空有限集,$\mathcal{I}$ 是满足遗传公理和增量公理的 $X$ 的非空子集。本文研究了对于哪些半群(主要是有限半群)$S$,一对$(\widehat{S}, \mathcal{I})$将是一个矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matroids related to groups and semigroups
Matroid is defined as a pair $(X,\mathcal{I})$, where $X$ is a nonempty finite set, and $\mathcal{I}$ is a nonempty set of subsets of  $X$ that satisfies the Hereditary Axiom and the Augmentation Axiom. The paper investigates for which semigroups (primarily finite) $S$, the pair $(\widehat{S}, \mathcal{I})$ will be a matroid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信