星-林德洛夫空间的可数交集特征

Q4 Mathematics
P. Bal
{"title":"星-林德洛夫空间的可数交集特征","authors":"P. Bal","doi":"10.15421/242308","DOIUrl":null,"url":null,"abstract":"There have been various studies on star-Lindelöfness but they always explain it in terms of open coverings. So, we have demonstrated in this study a connection between star-Lindelöfness and the family of closed sets that resembles countable intersection property of Lindelöf space. We show that a topological space $X$ is star-Lindelöf if and only if every closed subset's family of $X$ not having the modified non-countable intersection property have non-empty intersection.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"13 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Countable Intersection Like Characterization of Star-Lindelöf Spaces\",\"authors\":\"P. Bal\",\"doi\":\"10.15421/242308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been various studies on star-Lindelöfness but they always explain it in terms of open coverings. So, we have demonstrated in this study a connection between star-Lindelöfness and the family of closed sets that resembles countable intersection property of Lindelöf space. We show that a topological space $X$ is star-Lindelöf if and only if every closed subset's family of $X$ not having the modified non-countable intersection property have non-empty intersection.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"13 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/242308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

关于星-林德罗夫性的研究有很多,但他们总是从开放覆盖的角度来解释它。因此,我们在本研究中证明了星形林德罗夫性与封闭集族之间的联系,而封闭集族与林德罗夫空间的可数交集属性相似。我们证明,当且仅当 $X$ 的每个不具有修正的非可数交集属性的封闭子集族都具有非空交集时,拓扑空间 $X$ 才是星形林德洛夫空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Countable Intersection Like Characterization of Star-Lindelöf Spaces
There have been various studies on star-Lindelöfness but they always explain it in terms of open coverings. So, we have demonstrated in this study a connection between star-Lindelöfness and the family of closed sets that resembles countable intersection property of Lindelöf space. We show that a topological space $X$ is star-Lindelöf if and only if every closed subset's family of $X$ not having the modified non-countable intersection property have non-empty intersection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信