利用非线性优化方法确定混凝土流变参数

Q4 Engineering
A. Chepurnenko, Stepan V. Litvinov, B. Yazyev
{"title":"利用非线性优化方法确定混凝土流变参数","authors":"A. Chepurnenko, Stepan V. Litvinov, B. Yazyev","doi":"10.22337/2587-9618-2023-19-4-147-154","DOIUrl":null,"url":null,"abstract":"The article proposes a method for processing concrete creep curves based on the nonlinear equation of V.M. Bondarenko. The experimental data of A.V. Yashin is used. The problem of finding rheological parameters and the nonlinearity function is posed as a nonlinear optimization problem. The objective function represents the sum of the squared deviations of the experimental values of the creep strain from the theoretical values for all creep curves for one concrete at different stress levels. The minimum of the objective function is found using the interior point method, the surrogate optimization method, the pattern search method, the genetic algorithm, and the particle swarm method. It has been established that the first of these methods has the greatest efficiency. The proposed approach provides high quality approximation of experimental curves at all stress levels. It is shown that for concrete the nonlinearity of creep deformations is more pronounced than the nonlinearity of instantaneous deformations, and the same function cannot be used to describe these two types of nonlinearity.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DETERMINATION OF CONCRETE RHEOLOGICAL PARAMETERS USING NONLINEAR OPTIMIZATION METHODS\",\"authors\":\"A. Chepurnenko, Stepan V. Litvinov, B. Yazyev\",\"doi\":\"10.22337/2587-9618-2023-19-4-147-154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article proposes a method for processing concrete creep curves based on the nonlinear equation of V.M. Bondarenko. The experimental data of A.V. Yashin is used. The problem of finding rheological parameters and the nonlinearity function is posed as a nonlinear optimization problem. The objective function represents the sum of the squared deviations of the experimental values of the creep strain from the theoretical values for all creep curves for one concrete at different stress levels. The minimum of the objective function is found using the interior point method, the surrogate optimization method, the pattern search method, the genetic algorithm, and the particle swarm method. It has been established that the first of these methods has the greatest efficiency. The proposed approach provides high quality approximation of experimental curves at all stress levels. It is shown that for concrete the nonlinearity of creep deformations is more pronounced than the nonlinearity of instantaneous deformations, and the same function cannot be used to describe these two types of nonlinearity.\",\"PeriodicalId\":36116,\"journal\":{\"name\":\"International Journal for Computational Civil and Structural Engineering\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Civil and Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22337/2587-9618-2023-19-4-147-154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Civil and Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22337/2587-9618-2023-19-4-147-154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

文章根据 V.M. Bondarenko 的非线性方程提出了一种处理混凝土徐变曲线的方法。文中使用了 A.V. Yashin 的实验数据。寻找流变参数和非线性函数的问题是一个非线性优化问题。目标函数表示一种混凝土在不同应力水平下所有徐变曲线的徐变应变实验值与理论值的平方差之和。利用内点法、代用优化法、模式搜索法、遗传算法和粒子群法找到了目标函数的最小值。结果表明,第一种方法的效率最高。所提出的方法在所有应力水平上都能高质量地逼近实验曲线。研究表明,对于混凝土而言,蠕变变形的非线性比瞬时变形的非线性更明显,而且不能用相同的函数来描述这两种非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DETERMINATION OF CONCRETE RHEOLOGICAL PARAMETERS USING NONLINEAR OPTIMIZATION METHODS
The article proposes a method for processing concrete creep curves based on the nonlinear equation of V.M. Bondarenko. The experimental data of A.V. Yashin is used. The problem of finding rheological parameters and the nonlinearity function is posed as a nonlinear optimization problem. The objective function represents the sum of the squared deviations of the experimental values of the creep strain from the theoretical values for all creep curves for one concrete at different stress levels. The minimum of the objective function is found using the interior point method, the surrogate optimization method, the pattern search method, the genetic algorithm, and the particle swarm method. It has been established that the first of these methods has the greatest efficiency. The proposed approach provides high quality approximation of experimental curves at all stress levels. It is shown that for concrete the nonlinearity of creep deformations is more pronounced than the nonlinearity of instantaneous deformations, and the same function cannot be used to describe these two types of nonlinearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
43
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信