与广义雅可比多项式相关的函数序列说明

Q4 Mathematics
D. Waghela, S.B. Rao
{"title":"与广义雅可比多项式相关的函数序列说明","authors":"D. Waghela, S.B. Rao","doi":"10.15421/242316","DOIUrl":null,"url":null,"abstract":"An attempt is made to introduce and use operational techniques to study about a new sequence of functions containing generalized Jacobi polynomial. Some generating relations, finite summation formulae, explicit representation of a sequence of function $S_{n,\\tau ,k}^{(\\alpha ,\\beta ,\\gamma ,\\delta )} (x;a,u,v)$ associated with the generalized Jacobi polynomial $P_{n,\\,\\tau }^{\\left( {\\alpha ,\\,\\gamma ,\\,\\beta } \\right)} (x)$ have been deduced.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"88 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Sequence of Functions associated with the Generalized Jacobi polynomial\",\"authors\":\"D. Waghela, S.B. Rao\",\"doi\":\"10.15421/242316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An attempt is made to introduce and use operational techniques to study about a new sequence of functions containing generalized Jacobi polynomial. Some generating relations, finite summation formulae, explicit representation of a sequence of function $S_{n,\\\\tau ,k}^{(\\\\alpha ,\\\\beta ,\\\\gamma ,\\\\delta )} (x;a,u,v)$ associated with the generalized Jacobi polynomial $P_{n,\\\\,\\\\tau }^{\\\\left( {\\\\alpha ,\\\\,\\\\gamma ,\\\\,\\\\beta } \\\\right)} (x)$ have been deduced.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"88 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/242316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文试图引入并使用运算技术来研究包含广义雅可比多项式的新函数序列。一些生成关系、有限求和公式、函数序列$S_{n,\tau ,k}^{(\alpha ,\beta ,\gamma ,\delta )} (x;a,u,v)$ 与广义雅可比多项式 $P_{n,\,\tau }^{\left( {\alpha ,\,\gamma ,\,\beta } \right)} (x)$ 相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Sequence of Functions associated with the Generalized Jacobi polynomial
An attempt is made to introduce and use operational techniques to study about a new sequence of functions containing generalized Jacobi polynomial. Some generating relations, finite summation formulae, explicit representation of a sequence of function $S_{n,\tau ,k}^{(\alpha ,\beta ,\gamma ,\delta )} (x;a,u,v)$ associated with the generalized Jacobi polynomial $P_{n,\,\tau }^{\left( {\alpha ,\,\gamma ,\,\beta } \right)} (x)$ have been deduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信