关于与整数环模数 $n$ 相关的压缩零除数图

IF 1 Q1 MATHEMATICS
M. Aijaz, K. Rani, S. Pirzada
{"title":"关于与整数环模数 $n$ 相关的压缩零除数图","authors":"M. Aijaz, K. Rani, S. Pirzada","doi":"10.15330/cmp.15.2.552-558","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with unity $1\\ne 0$. In this paper, we completely describe the vertex and the edge chromatic number of the compressed zero divisor graph of the ring of integers modulo $n$. We find the clique number of the compressed zero divisor graph $\\Gamma_E(\\mathbb Z_n)$ of $\\mathbb Z_n$ and show that $\\Gamma_E(\\mathbb Z_n)$ is weakly perfect. We also show that the edge chromatic number of $\\Gamma_E(\\mathbb Z_n)$ is equal to the largest degree proving that $\\Gamma_E(\\mathbb Z_n)$ resides in class 1 family of graphs.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On compressed zero divisor graphs associated to the ring of integers modulo $n$\",\"authors\":\"M. Aijaz, K. Rani, S. Pirzada\",\"doi\":\"10.15330/cmp.15.2.552-558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring with unity $1\\\\ne 0$. In this paper, we completely describe the vertex and the edge chromatic number of the compressed zero divisor graph of the ring of integers modulo $n$. We find the clique number of the compressed zero divisor graph $\\\\Gamma_E(\\\\mathbb Z_n)$ of $\\\\mathbb Z_n$ and show that $\\\\Gamma_E(\\\\mathbb Z_n)$ is weakly perfect. We also show that the edge chromatic number of $\\\\Gamma_E(\\\\mathbb Z_n)$ is equal to the largest degree proving that $\\\\Gamma_E(\\\\mathbb Z_n)$ resides in class 1 family of graphs.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.552-558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.552-558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $R$ 是一个具有统一性 $1\ne 0$ 的交换环。在本文中,我们完整地描述了整数环 modulo $n$ 的压缩零因子图的顶点和边色度数。我们找到了 $\mathbb Z_n$ 的压缩零除数图 $\Gamma_E(\mathbb Z_n)$ 的簇数,并证明了 $\Gamma_E(\mathbb Z_n)$ 是弱完美的。我们还证明了 $\Gamma_E(\mathbb Z_n)$ 的边色度数等于最大度数,证明了 $\Gamma_E(\mathbb Z_n)$ 属于第 1 类图族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On compressed zero divisor graphs associated to the ring of integers modulo $n$
Let $R$ be a commutative ring with unity $1\ne 0$. In this paper, we completely describe the vertex and the edge chromatic number of the compressed zero divisor graph of the ring of integers modulo $n$. We find the clique number of the compressed zero divisor graph $\Gamma_E(\mathbb Z_n)$ of $\mathbb Z_n$ and show that $\Gamma_E(\mathbb Z_n)$ is weakly perfect. We also show that the edge chromatic number of $\Gamma_E(\mathbb Z_n)$ is equal to the largest degree proving that $\Gamma_E(\mathbb Z_n)$ resides in class 1 family of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信