Yan Li, Ming K. Lim, Weiqing Xiong, Xingjun Huang, Yuhe Shi, Songyi Wang
{"title":"考虑充电站因素的电动汽车路由模型,促进可持续物流","authors":"Yan Li, Ming K. Lim, Weiqing Xiong, Xingjun Huang, Yuhe Shi, Songyi Wang","doi":"10.1108/imds-08-2023-0581","DOIUrl":null,"url":null,"abstract":"PurposeRecently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental friendliness. Considering the limited battery capacity of electric vehicles, it is vital to optimize battery charging during the distribution process.Design/methodology/approachThis study establishes an electric vehicle routing model for cold chain logistics with charging stations, which will integrate multiple distribution centers to achieve sustainable logistics. The suggested optimization model aimed at minimizing the overall cost of cold chain logistics, which incorporates fixed, damage, refrigeration, penalty, queuing, energy and carbon emission costs. In addition, the proposed model takes into accounts factors such as time-varying speed, time-varying electricity price, energy consumption and queuing at the charging station. In the proposed model, a hybrid crow search algorithm (CSA), which combines opposition-based learning (OBL) and taboo search (TS), is developed for optimization purposes. To evaluate the model, algorithms and model experiments are conducted based on a real case in Chongqing, China.FindingsThe result of algorithm experiments illustrate that hybrid CSA is effective in terms of both solution quality and speed compared to genetic algorithm (GA) and particle swarm optimization (PSO). In addition, the model experiments highlight the benefits of joint distribution over individual distribution in reducing costs and carbon emissions.Research limitations/implicationsThe optimization model of cold chain logistics routes based on electric vehicles provides a reference for managers to develop distribution plans, which contributes to the development of sustainable logistics.Originality/valueIn prior studies, many scholars have conducted related research on the subject of cold chain logistics vehicle routing problems and electric vehicle routing problems separately, but few have merged the above two subjects. In response, this study innovatively designs an electric vehicle routing model for cold chain logistics with consideration of time-varying speeds, time-varying electricity prices, energy consumption and queues at charging stations to make it consistent with the real world.","PeriodicalId":270213,"journal":{"name":"Industrial Management & Data Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electric vehicle routing model with charging stations consideration for sustainable logistics\",\"authors\":\"Yan Li, Ming K. Lim, Weiqing Xiong, Xingjun Huang, Yuhe Shi, Songyi Wang\",\"doi\":\"10.1108/imds-08-2023-0581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeRecently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental friendliness. Considering the limited battery capacity of electric vehicles, it is vital to optimize battery charging during the distribution process.Design/methodology/approachThis study establishes an electric vehicle routing model for cold chain logistics with charging stations, which will integrate multiple distribution centers to achieve sustainable logistics. The suggested optimization model aimed at minimizing the overall cost of cold chain logistics, which incorporates fixed, damage, refrigeration, penalty, queuing, energy and carbon emission costs. In addition, the proposed model takes into accounts factors such as time-varying speed, time-varying electricity price, energy consumption and queuing at the charging station. In the proposed model, a hybrid crow search algorithm (CSA), which combines opposition-based learning (OBL) and taboo search (TS), is developed for optimization purposes. To evaluate the model, algorithms and model experiments are conducted based on a real case in Chongqing, China.FindingsThe result of algorithm experiments illustrate that hybrid CSA is effective in terms of both solution quality and speed compared to genetic algorithm (GA) and particle swarm optimization (PSO). In addition, the model experiments highlight the benefits of joint distribution over individual distribution in reducing costs and carbon emissions.Research limitations/implicationsThe optimization model of cold chain logistics routes based on electric vehicles provides a reference for managers to develop distribution plans, which contributes to the development of sustainable logistics.Originality/valueIn prior studies, many scholars have conducted related research on the subject of cold chain logistics vehicle routing problems and electric vehicle routing problems separately, but few have merged the above two subjects. In response, this study innovatively designs an electric vehicle routing model for cold chain logistics with consideration of time-varying speeds, time-varying electricity prices, energy consumption and queues at charging stations to make it consistent with the real world.\",\"PeriodicalId\":270213,\"journal\":{\"name\":\"Industrial Management & Data Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Management & Data Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/imds-08-2023-0581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Management & Data Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-08-2023-0581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An electric vehicle routing model with charging stations consideration for sustainable logistics
PurposeRecently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental friendliness. Considering the limited battery capacity of electric vehicles, it is vital to optimize battery charging during the distribution process.Design/methodology/approachThis study establishes an electric vehicle routing model for cold chain logistics with charging stations, which will integrate multiple distribution centers to achieve sustainable logistics. The suggested optimization model aimed at minimizing the overall cost of cold chain logistics, which incorporates fixed, damage, refrigeration, penalty, queuing, energy and carbon emission costs. In addition, the proposed model takes into accounts factors such as time-varying speed, time-varying electricity price, energy consumption and queuing at the charging station. In the proposed model, a hybrid crow search algorithm (CSA), which combines opposition-based learning (OBL) and taboo search (TS), is developed for optimization purposes. To evaluate the model, algorithms and model experiments are conducted based on a real case in Chongqing, China.FindingsThe result of algorithm experiments illustrate that hybrid CSA is effective in terms of both solution quality and speed compared to genetic algorithm (GA) and particle swarm optimization (PSO). In addition, the model experiments highlight the benefits of joint distribution over individual distribution in reducing costs and carbon emissions.Research limitations/implicationsThe optimization model of cold chain logistics routes based on electric vehicles provides a reference for managers to develop distribution plans, which contributes to the development of sustainable logistics.Originality/valueIn prior studies, many scholars have conducted related research on the subject of cold chain logistics vehicle routing problems and electric vehicle routing problems separately, but few have merged the above two subjects. In response, this study innovatively designs an electric vehicle routing model for cold chain logistics with consideration of time-varying speeds, time-varying electricity prices, energy consumption and queues at charging stations to make it consistent with the real world.