Huiying Huang, Shaoting Peng, Gaohang Yu, Jinhong Huang, Wenyu Hu
{"title":"基于彩色超像素分割的高光谱图像复原","authors":"Huiying Huang, Shaoting Peng, Gaohang Yu, Jinhong Huang, Wenyu Hu","doi":"10.19139/soic-2310-5070-1912","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSI) are often degraded by various types of noise during the acquisition process, such as Gaussian noise, impulse noise, dead lines and stripes, etc. Recently, there exists a growing attenrion on low-rank matrix/tensor-based methods for HSI data restoration, assuming that the overall data is low-rank. However, the assumption of overall low-rankness often proves inaccurate due to the spatially heterogeneous local similarity characteristics of HSI. Traditional cube-based methods involve dividing the HSI into fixed-size cubes. However, using fixed-size cubes does not provide flexible coverage of locally similar regions at varying scales. Inspired by superpixel segmentation, this paper proposes the Shrink Low-rank Super-tensor (SLRST) approach for HSI recovery. Instead of using fixed-size cubes, SLRST employs a size-adaptive super-tensor. The proposed approach is effectively solved using the Alternating Direction Method of Multipliers (ADMM). Numerical experiments on HSI data verify that the proposed method outperforms other competing methods.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"52 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral image restoration based on color superpixel segmentation\",\"authors\":\"Huiying Huang, Shaoting Peng, Gaohang Yu, Jinhong Huang, Wenyu Hu\",\"doi\":\"10.19139/soic-2310-5070-1912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images (HSI) are often degraded by various types of noise during the acquisition process, such as Gaussian noise, impulse noise, dead lines and stripes, etc. Recently, there exists a growing attenrion on low-rank matrix/tensor-based methods for HSI data restoration, assuming that the overall data is low-rank. However, the assumption of overall low-rankness often proves inaccurate due to the spatially heterogeneous local similarity characteristics of HSI. Traditional cube-based methods involve dividing the HSI into fixed-size cubes. However, using fixed-size cubes does not provide flexible coverage of locally similar regions at varying scales. Inspired by superpixel segmentation, this paper proposes the Shrink Low-rank Super-tensor (SLRST) approach for HSI recovery. Instead of using fixed-size cubes, SLRST employs a size-adaptive super-tensor. The proposed approach is effectively solved using the Alternating Direction Method of Multipliers (ADMM). Numerical experiments on HSI data verify that the proposed method outperforms other competing methods.\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"52 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperspectral image restoration based on color superpixel segmentation
Hyperspectral images (HSI) are often degraded by various types of noise during the acquisition process, such as Gaussian noise, impulse noise, dead lines and stripes, etc. Recently, there exists a growing attenrion on low-rank matrix/tensor-based methods for HSI data restoration, assuming that the overall data is low-rank. However, the assumption of overall low-rankness often proves inaccurate due to the spatially heterogeneous local similarity characteristics of HSI. Traditional cube-based methods involve dividing the HSI into fixed-size cubes. However, using fixed-size cubes does not provide flexible coverage of locally similar regions at varying scales. Inspired by superpixel segmentation, this paper proposes the Shrink Low-rank Super-tensor (SLRST) approach for HSI recovery. Instead of using fixed-size cubes, SLRST employs a size-adaptive super-tensor. The proposed approach is effectively solved using the Alternating Direction Method of Multipliers (ADMM). Numerical experiments on HSI data verify that the proposed method outperforms other competing methods.