曲线多孔表面上铁流体联合对流的吸热/发热现象

Maleque Kh. Abdul
{"title":"曲线多孔表面上铁流体联合对流的吸热/发热现象","authors":"Maleque Kh. Abdul","doi":"10.53799/ajse.v22i3.546","DOIUrl":null,"url":null,"abstract":"In the influence of fluid buoyancy forces, the ferrofluid combined convective flow in porous curvilinear surfaces is studied with thermal generation/absorption effect. In the ambient flow conditions, the pressure gradient terms and ferrofluid buoyancy forces are replaced by the free steam velocity . The governing equations of the present problem are converted to ODEs by introducing non-dimensional functions and similarity variable. Boundary conditions of first derivative of velocities and temperature of our problem were constructed by the initial value problem, also the unknown initial conditions are found by shooting methods, and then a set of ODEs is solved numerically by the integration scheme of the six-order Range-Kutta method. The results of the solutions are presented graphically of velocity and thermal profiles with the help of MATLAB for different values of suction parameter  and heat absorption parameter . Finally, the comparisons of the results highlight the justification of the numerical calculation accepted in the presence study. The problems in curvilinear surface study of boundary layer flow are complicated in fluid mechanics with applications of natural science and engineering.","PeriodicalId":224436,"journal":{"name":"AIUB Journal of Science and Engineering (AJSE)","volume":"77 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Thermal Absorption/Generation on Ferro-fluid Combined Convective Flow Over Curvilinear Porous Surfaces\",\"authors\":\"Maleque Kh. Abdul\",\"doi\":\"10.53799/ajse.v22i3.546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the influence of fluid buoyancy forces, the ferrofluid combined convective flow in porous curvilinear surfaces is studied with thermal generation/absorption effect. In the ambient flow conditions, the pressure gradient terms and ferrofluid buoyancy forces are replaced by the free steam velocity . The governing equations of the present problem are converted to ODEs by introducing non-dimensional functions and similarity variable. Boundary conditions of first derivative of velocities and temperature of our problem were constructed by the initial value problem, also the unknown initial conditions are found by shooting methods, and then a set of ODEs is solved numerically by the integration scheme of the six-order Range-Kutta method. The results of the solutions are presented graphically of velocity and thermal profiles with the help of MATLAB for different values of suction parameter  and heat absorption parameter . Finally, the comparisons of the results highlight the justification of the numerical calculation accepted in the presence study. The problems in curvilinear surface study of boundary layer flow are complicated in fluid mechanics with applications of natural science and engineering.\",\"PeriodicalId\":224436,\"journal\":{\"name\":\"AIUB Journal of Science and Engineering (AJSE)\",\"volume\":\"77 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIUB Journal of Science and Engineering (AJSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53799/ajse.v22i3.546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering (AJSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53799/ajse.v22i3.546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在流体浮力的影响下,研究了铁流体在多孔曲线表面中的联合对流以及热生成/吸收效应。在环境流动条件下,压力梯度项和铁流体浮力由自由蒸汽速度代替。通过引入非维度函数和相似变量,将本问题的控制方程转换为 ODE。通过初值问题构建了速度和温度一阶导数的边界条件,并通过射击法找到了未知的初始条件,然后通过六阶 Range-Kutta 方法的积分方案对 ODEs 组进行了数值求解。在 MATLAB 的帮助下,对不同吸力参数值和吸热参数值的速度和热曲线进行了图解。最后,对结果的比较强调了本研究中采用的数值计算方法的合理性。边界层流动的曲线表面研究问题是流体力学中的复杂问题,在自然科学和工程学中都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Thermal Absorption/Generation on Ferro-fluid Combined Convective Flow Over Curvilinear Porous Surfaces
In the influence of fluid buoyancy forces, the ferrofluid combined convective flow in porous curvilinear surfaces is studied with thermal generation/absorption effect. In the ambient flow conditions, the pressure gradient terms and ferrofluid buoyancy forces are replaced by the free steam velocity . The governing equations of the present problem are converted to ODEs by introducing non-dimensional functions and similarity variable. Boundary conditions of first derivative of velocities and temperature of our problem were constructed by the initial value problem, also the unknown initial conditions are found by shooting methods, and then a set of ODEs is solved numerically by the integration scheme of the six-order Range-Kutta method. The results of the solutions are presented graphically of velocity and thermal profiles with the help of MATLAB for different values of suction parameter  and heat absorption parameter . Finally, the comparisons of the results highlight the justification of the numerical calculation accepted in the presence study. The problems in curvilinear surface study of boundary layer flow are complicated in fluid mechanics with applications of natural science and engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信