M. Nagorkin, Vladimir Fedorov, A. Suslov, A. Totay
{"title":"通过组合式抗摩擦表面处理,对滑动摩擦对的表面操作粗糙度参数进行技术控制","authors":"M. Nagorkin, Vladimir Fedorov, A. Suslov, A. Totay","doi":"10.30987/2223-4608-2023-37-45","DOIUrl":null,"url":null,"abstract":"The article presents study results of the technological control ways for roughness operational parameters generation in tribo-elements of sliding friction pairs through combined antifriction surfacing methods. The possibilities of technological control of the roughness parameters of the parts surfaces were studied for two types of part cutting – based on both: the application of hard wear-resistant nitride-containing coatings on the surfaces of parts and on the application of soft copper-containing work plates on the working surfaces of parts in combination with surface plastic deformation technique. Surface plastic deformation was carried out by diamond burnishing or ball burnishing. As controlling factors in experimental studies, both: the conditions for surfacing of parts and the run-in conditions in sliding friction pairs were viewed. Break-in process of pairs was carried out on a programmable testing unit (friction machine), which allows simulating both: static loads and dynamic loads that change together with the specified parameters in a periodic manner. Models for quantitative ratings of the influence of surfacing factors of parts using anti-friction technologies and their further development in sliding friction pairs on operational roughness parameters generation, which, in turn, have a significant impact on the operational properties of tribo-elements. To assess the degree of technological factors effect of the treatment on the generation of operational roughness of parts, their ranking by the Pareto method was carried out. The degree of consistency of control factors impact on operational roughness parameters generation was assessed using the coefficient of rank concordance. The information presented in the article is necessary for practical application in the field of designing technological methods of combined antifriction surfacing of parts for sliding friction pairs of machines and mechanisms.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"92 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technological control of surface operational roughness parameters for sliding friction pairs through combined antifriction surfacing\",\"authors\":\"M. Nagorkin, Vladimir Fedorov, A. Suslov, A. Totay\",\"doi\":\"10.30987/2223-4608-2023-37-45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents study results of the technological control ways for roughness operational parameters generation in tribo-elements of sliding friction pairs through combined antifriction surfacing methods. The possibilities of technological control of the roughness parameters of the parts surfaces were studied for two types of part cutting – based on both: the application of hard wear-resistant nitride-containing coatings on the surfaces of parts and on the application of soft copper-containing work plates on the working surfaces of parts in combination with surface plastic deformation technique. Surface plastic deformation was carried out by diamond burnishing or ball burnishing. As controlling factors in experimental studies, both: the conditions for surfacing of parts and the run-in conditions in sliding friction pairs were viewed. Break-in process of pairs was carried out on a programmable testing unit (friction machine), which allows simulating both: static loads and dynamic loads that change together with the specified parameters in a periodic manner. Models for quantitative ratings of the influence of surfacing factors of parts using anti-friction technologies and their further development in sliding friction pairs on operational roughness parameters generation, which, in turn, have a significant impact on the operational properties of tribo-elements. To assess the degree of technological factors effect of the treatment on the generation of operational roughness of parts, their ranking by the Pareto method was carried out. The degree of consistency of control factors impact on operational roughness parameters generation was assessed using the coefficient of rank concordance. The information presented in the article is necessary for practical application in the field of designing technological methods of combined antifriction surfacing of parts for sliding friction pairs of machines and mechanisms.\",\"PeriodicalId\":21570,\"journal\":{\"name\":\"Science intensive technologies in mechanical engineering\",\"volume\":\"92 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science intensive technologies in mechanical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/2223-4608-2023-37-45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science intensive technologies in mechanical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/2223-4608-2023-37-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technological control of surface operational roughness parameters for sliding friction pairs through combined antifriction surfacing
The article presents study results of the technological control ways for roughness operational parameters generation in tribo-elements of sliding friction pairs through combined antifriction surfacing methods. The possibilities of technological control of the roughness parameters of the parts surfaces were studied for two types of part cutting – based on both: the application of hard wear-resistant nitride-containing coatings on the surfaces of parts and on the application of soft copper-containing work plates on the working surfaces of parts in combination with surface plastic deformation technique. Surface plastic deformation was carried out by diamond burnishing or ball burnishing. As controlling factors in experimental studies, both: the conditions for surfacing of parts and the run-in conditions in sliding friction pairs were viewed. Break-in process of pairs was carried out on a programmable testing unit (friction machine), which allows simulating both: static loads and dynamic loads that change together with the specified parameters in a periodic manner. Models for quantitative ratings of the influence of surfacing factors of parts using anti-friction technologies and their further development in sliding friction pairs on operational roughness parameters generation, which, in turn, have a significant impact on the operational properties of tribo-elements. To assess the degree of technological factors effect of the treatment on the generation of operational roughness of parts, their ranking by the Pareto method was carried out. The degree of consistency of control factors impact on operational roughness parameters generation was assessed using the coefficient of rank concordance. The information presented in the article is necessary for practical application in the field of designing technological methods of combined antifriction surfacing of parts for sliding friction pairs of machines and mechanisms.