{"title":"布西系统和斯坦纳战术问题","authors":"C. Colbourn, Donald L. Kreher, P. R. Ostergard","doi":"10.3336/gm.58.2.04","DOIUrl":null,"url":null,"abstract":"In 1853, Steiner posed a number of combinatorial (tactical) problems, which eventually led to a large body of research on Steiner systems. However, solutions to Steiner's questions coincide with Steiner systems only for strengths two and three. For larger strengths, essentially only one class of solutions to Steiner's tactical problems is known, found by Bussey more than a century ago. In this paper, the relationships among Steiner systems, perfect binary one-error-correcting codes, and solutions to Steiner's tactical problem (Bussey systems) are discussed. For the latter, computational results are provided for at most 15 points.","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":"99 7","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bussey systems and Steiner's tactical problem\",\"authors\":\"C. Colbourn, Donald L. Kreher, P. R. Ostergard\",\"doi\":\"10.3336/gm.58.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1853, Steiner posed a number of combinatorial (tactical) problems, which eventually led to a large body of research on Steiner systems. However, solutions to Steiner's questions coincide with Steiner systems only for strengths two and three. For larger strengths, essentially only one class of solutions to Steiner's tactical problems is known, found by Bussey more than a century ago. In this paper, the relationships among Steiner systems, perfect binary one-error-correcting codes, and solutions to Steiner's tactical problem (Bussey systems) are discussed. For the latter, computational results are provided for at most 15 points.\",\"PeriodicalId\":55601,\"journal\":{\"name\":\"Glasnik Matematicki\",\"volume\":\"99 7\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasnik Matematicki\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.58.2.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.2.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In 1853, Steiner posed a number of combinatorial (tactical) problems, which eventually led to a large body of research on Steiner systems. However, solutions to Steiner's questions coincide with Steiner systems only for strengths two and three. For larger strengths, essentially only one class of solutions to Steiner's tactical problems is known, found by Bussey more than a century ago. In this paper, the relationships among Steiner systems, perfect binary one-error-correcting codes, and solutions to Steiner's tactical problem (Bussey systems) are discussed. For the latter, computational results are provided for at most 15 points.
期刊介绍:
Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.