维罗尼斯对偶超元的分裂性:快速证明

IF 0.5 4区 数学 Q3 MATHEMATICS
Ulrich Dempwolff
{"title":"维罗尼斯对偶超元的分裂性:快速证明","authors":"Ulrich Dempwolff","doi":"10.3336/gm.58.2.12","DOIUrl":null,"url":null,"abstract":"Satoshi Yoshiara shows in [7] that the Veronesean dual hyperovals over \\({\\mathbb F}_2\\) are of split type. So far there exists no published proof that a Veronesean dual hyperoval over any finite field of even characteristic is of split type. In this note we give a quick proof of this fact.","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":"152 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitness of the Veronesean dual hyperovals: a quick proof\",\"authors\":\"Ulrich Dempwolff\",\"doi\":\"10.3336/gm.58.2.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satoshi Yoshiara shows in [7] that the Veronesean dual hyperovals over \\\\({\\\\mathbb F}_2\\\\) are of split type. So far there exists no published proof that a Veronesean dual hyperoval over any finite field of even characteristic is of split type. In this note we give a quick proof of this fact.\",\"PeriodicalId\":55601,\"journal\":{\"name\":\"Glasnik Matematicki\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasnik Matematicki\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.58.2.12\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.2.12","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Satoshi Yoshiara 在 [7] 中证明了 \({\mathbb F}_2\) 上的 Veronesean 对偶超值是分裂类型的。迄今为止,还没有任何公开的证明表明在偶数特征的有限域上的 Veronesean 对偶超值是分裂类型的。 在本注释中,我们将给出这一事实的快速证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitness of the Veronesean dual hyperovals: a quick proof
Satoshi Yoshiara shows in [7] that the Veronesean dual hyperovals over \({\mathbb F}_2\) are of split type. So far there exists no published proof that a Veronesean dual hyperoval over any finite field of even characteristic is of split type. In this note we give a quick proof of this fact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glasnik Matematicki
Glasnik Matematicki MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.80
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信