用于玫瑰病诊断的决策树算法比较分析

Burcu Durmuş, Öznur İŞÇİ GÜNERİ, Nevin GÜLER DİNCER
{"title":"用于玫瑰病诊断的决策树算法比较分析","authors":"Burcu Durmuş, Öznur İŞÇİ GÜNERİ, Nevin GÜLER DİNCER","doi":"10.55440/umufed.1374429","DOIUrl":null,"url":null,"abstract":"Makine öğrenimi, veriler içerisindeki yararlı bilgileri çıkarmak ve veriler arasındaki ilişkilere dayalı algoritmalar tasarlamak için kullanılan istatistiksel bir modelleme konusudur. Makine öğrenimi kullanmanın en büyük avantajı, algoritmanın verilerle ne yapacağını öğrendiğinde gerekli işlemleri otomatik olarak yapmasıdır. Veri madenciliği konuları arasında sıklıkla kullanılan yöntem, sınıflandırmadır. Sınıflandırma yöntemi, pek çok algoritmaya kıyasla pratik ve hızlı çözümler sunan alternatif bir yöntemdir. Sınıflandırma yönteminde veriler içerisindeki bilgiler, bağıntılar, desenler ve benzerliklerden yola çıkılarak çeşitli algoritmalar yardımıyla model oluşturulur. Bu model üzerinden yeni gözlemler için sınıf tahmini yapılır. Bu çalışmada, farklı karar ağacı algoritmaları ile hastalık teşhisi için (hasta-hasta değil) sınıflandırma analizi yapılmıştır. Çalışmada asıl amaç; gözlemin hasta-hasta değil şeklinde sınıflandırılmasından ziyade, bu ayrım yapılırken kullanılan değişkenlerin neler olduğunun belirlemesi ve literatür ile kıyaslanmasıdır. Eğitim ve test aşamasında veriler, çapraz doğrulama ile karşılaştırılmıştır. En başarılı yöntem tespit edilirken doğruluk, kesinlik, duyarlılık, F-ölçütü, MCC, ROC Area, PRC Area ve Kappa değerleri göz önüne alınmıştır.","PeriodicalId":315046,"journal":{"name":"Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi","volume":"271 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A COMPARATIVE ANALYSIS OF DECISION TREE ALGORITHMS FOR ROSE DISEASE DIAGNOSIS\",\"authors\":\"Burcu Durmuş, Öznur İŞÇİ GÜNERİ, Nevin GÜLER DİNCER\",\"doi\":\"10.55440/umufed.1374429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Makine öğrenimi, veriler içerisindeki yararlı bilgileri çıkarmak ve veriler arasındaki ilişkilere dayalı algoritmalar tasarlamak için kullanılan istatistiksel bir modelleme konusudur. Makine öğrenimi kullanmanın en büyük avantajı, algoritmanın verilerle ne yapacağını öğrendiğinde gerekli işlemleri otomatik olarak yapmasıdır. Veri madenciliği konuları arasında sıklıkla kullanılan yöntem, sınıflandırmadır. Sınıflandırma yöntemi, pek çok algoritmaya kıyasla pratik ve hızlı çözümler sunan alternatif bir yöntemdir. Sınıflandırma yönteminde veriler içerisindeki bilgiler, bağıntılar, desenler ve benzerliklerden yola çıkılarak çeşitli algoritmalar yardımıyla model oluşturulur. Bu model üzerinden yeni gözlemler için sınıf tahmini yapılır. Bu çalışmada, farklı karar ağacı algoritmaları ile hastalık teşhisi için (hasta-hasta değil) sınıflandırma analizi yapılmıştır. Çalışmada asıl amaç; gözlemin hasta-hasta değil şeklinde sınıflandırılmasından ziyade, bu ayrım yapılırken kullanılan değişkenlerin neler olduğunun belirlemesi ve literatür ile kıyaslanmasıdır. Eğitim ve test aşamasında veriler, çapraz doğrulama ile karşılaştırılmıştır. En başarılı yöntem tespit edilirken doğruluk, kesinlik, duyarlılık, F-ölçütü, MCC, ROC Area, PRC Area ve Kappa değerleri göz önüne alınmıştır.\",\"PeriodicalId\":315046,\"journal\":{\"name\":\"Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi\",\"volume\":\"271 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55440/umufed.1374429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55440/umufed.1374429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习是一门统计建模学科,用于从数据中提取有用信息,并根据数据之间的关系设计算法。使用机器学习的最大优势在于,当算法学会如何处理数据时,它会自动执行必要的操作。在数据挖掘主题中,最常用的方法是分类法。分类法是一种替代方法,与许多算法相比,它能提供实用、快速的解决方案。在分类方法中,根据数据中的信息、关系、模式和相似性,在各种算法的帮助下创建一个模型。根据该模型对新的观察结果进行类别预测。在本研究中,使用不同的决策树算法对疾病诊断(病人-非病人)进行了分类分析。研究的主要目的是确定用于进行这种区分的变量,并将其与文献进行比较,而不是将观察结果归类为病人-非病人。在训练和测试阶段,通过交叉验证对数据进行了比较。在确定最成功的方法时,考虑了准确度、精确度、灵敏度、F-measure、MCC、ROC 面积、PRC 面积和 Kappa 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A COMPARATIVE ANALYSIS OF DECISION TREE ALGORITHMS FOR ROSE DISEASE DIAGNOSIS
Makine öğrenimi, veriler içerisindeki yararlı bilgileri çıkarmak ve veriler arasındaki ilişkilere dayalı algoritmalar tasarlamak için kullanılan istatistiksel bir modelleme konusudur. Makine öğrenimi kullanmanın en büyük avantajı, algoritmanın verilerle ne yapacağını öğrendiğinde gerekli işlemleri otomatik olarak yapmasıdır. Veri madenciliği konuları arasında sıklıkla kullanılan yöntem, sınıflandırmadır. Sınıflandırma yöntemi, pek çok algoritmaya kıyasla pratik ve hızlı çözümler sunan alternatif bir yöntemdir. Sınıflandırma yönteminde veriler içerisindeki bilgiler, bağıntılar, desenler ve benzerliklerden yola çıkılarak çeşitli algoritmalar yardımıyla model oluşturulur. Bu model üzerinden yeni gözlemler için sınıf tahmini yapılır. Bu çalışmada, farklı karar ağacı algoritmaları ile hastalık teşhisi için (hasta-hasta değil) sınıflandırma analizi yapılmıştır. Çalışmada asıl amaç; gözlemin hasta-hasta değil şeklinde sınıflandırılmasından ziyade, bu ayrım yapılırken kullanılan değişkenlerin neler olduğunun belirlemesi ve literatür ile kıyaslanmasıdır. Eğitim ve test aşamasında veriler, çapraz doğrulama ile karşılaştırılmıştır. En başarılı yöntem tespit edilirken doğruluk, kesinlik, duyarlılık, F-ölçütü, MCC, ROC Area, PRC Area ve Kappa değerleri göz önüne alınmıştır.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信