{"title":"通过延迟 Cesaro 和延迟 Euler 等式统计收敛的模糊 Korovkin 型定理","authors":"Purshottam Agrawal, Behar Baxhaku","doi":"10.33993/jnaat522-1350","DOIUrl":null,"url":null,"abstract":"We establish a fuzzy Korovkin type approximation theorem by using \\(eq-stat^{D}_{CE}\\)(deferred Ces\\'{a}ro and deferred Euler equi-statistical) convergence proposed by Saini et al. for continuous functions over \\([a,b]\\). Further, we determine the rate of convergence via fuzzy modulus of continuity.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"305 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Korovkin type Theorems via deferred Cesaro and deferred Euler equi-statistical convergence\",\"authors\":\"Purshottam Agrawal, Behar Baxhaku\",\"doi\":\"10.33993/jnaat522-1350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a fuzzy Korovkin type approximation theorem by using \\\\(eq-stat^{D}_{CE}\\\\)(deferred Ces\\\\'{a}ro and deferred Euler equi-statistical) convergence proposed by Saini et al. for continuous functions over \\\\([a,b]\\\\). Further, we determine the rate of convergence via fuzzy modulus of continuity.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"305 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat522-1350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat522-1350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy Korovkin type Theorems via deferred Cesaro and deferred Euler equi-statistical convergence
We establish a fuzzy Korovkin type approximation theorem by using \(eq-stat^{D}_{CE}\)(deferred Ces\'{a}ro and deferred Euler equi-statistical) convergence proposed by Saini et al. for continuous functions over \([a,b]\). Further, we determine the rate of convergence via fuzzy modulus of continuity.