{"title":"利用基于高光谱成像的波长选择和机器学习估算苹果叶片氮浓度","authors":"Sihyeong Jang, Jeomhwa Han, Junggun Cho, Jaehoon Jung, Seulki Lee, Dongyong Lee, Jingook Kim","doi":"10.3390/horticulturae10010035","DOIUrl":null,"url":null,"abstract":"In apple cultivation, the total nitrogen content is an important indicator of plant growth, fruit quality, and yield. Timely monitoring of growth becomes imperative, since an imbalance, either in deficiency or excess nitrogen, can result in physiological disorders, adversely impacting both the quantity and quality of fruit. Leaf nitrogen content can be determined using simple chlorophyll meters or destructive testing; however, these methods are time-consuming. However, by employing spectral imaging technology, it is possible to swiftly predict leaf nitrogen content. This study estimated the total nitrogen content in apple trees via hyperspectral imaging and machine learning-based regression analysis (partial least-squares regression (PLSR), support vector regression (SVR), and eXtreme gradient boosting regression (XGBoost). Additionally, to reduce computational costs and improve reproducibility, spectral binning was divided into three stages (4, 8, and 16 bins), and models were compared with a 2-binning estimation model. The analysis focused on green, red, red edge, and near-infrared (NIR) spectra, with 5–10 selected wavelengths, and the SVR-based prediction model showed a similar or greater performance to that of the full spectrum. At 4- and 8-binning, the selected wavelengths were similar to those at 2-binning, maintaining similar prediction model performance. However, at 16 bp, the performance of the prediction model decreased owing to spectral data loss, leading to a significant reduction in wavelengths for nitrogen content estimation. These results can support informed nitrogen fertilization decisions, enabling precise, real-time monitoring of nitrogen content for enhanced plant growth, fruit quality, and yield in apple trees. Additionally, the selected wavelengths can be considered in the development of new types of multispectral sensors.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":"26 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Apple Leaf Nitrogen Concentration Using Hyperspectral Imaging-Based Wavelength Selection and Machine Learning\",\"authors\":\"Sihyeong Jang, Jeomhwa Han, Junggun Cho, Jaehoon Jung, Seulki Lee, Dongyong Lee, Jingook Kim\",\"doi\":\"10.3390/horticulturae10010035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In apple cultivation, the total nitrogen content is an important indicator of plant growth, fruit quality, and yield. Timely monitoring of growth becomes imperative, since an imbalance, either in deficiency or excess nitrogen, can result in physiological disorders, adversely impacting both the quantity and quality of fruit. Leaf nitrogen content can be determined using simple chlorophyll meters or destructive testing; however, these methods are time-consuming. However, by employing spectral imaging technology, it is possible to swiftly predict leaf nitrogen content. This study estimated the total nitrogen content in apple trees via hyperspectral imaging and machine learning-based regression analysis (partial least-squares regression (PLSR), support vector regression (SVR), and eXtreme gradient boosting regression (XGBoost). Additionally, to reduce computational costs and improve reproducibility, spectral binning was divided into three stages (4, 8, and 16 bins), and models were compared with a 2-binning estimation model. The analysis focused on green, red, red edge, and near-infrared (NIR) spectra, with 5–10 selected wavelengths, and the SVR-based prediction model showed a similar or greater performance to that of the full spectrum. At 4- and 8-binning, the selected wavelengths were similar to those at 2-binning, maintaining similar prediction model performance. However, at 16 bp, the performance of the prediction model decreased owing to spectral data loss, leading to a significant reduction in wavelengths for nitrogen content estimation. These results can support informed nitrogen fertilization decisions, enabling precise, real-time monitoring of nitrogen content for enhanced plant growth, fruit quality, and yield in apple trees. Additionally, the selected wavelengths can be considered in the development of new types of multispectral sensors.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10010035\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10010035","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Estimation of Apple Leaf Nitrogen Concentration Using Hyperspectral Imaging-Based Wavelength Selection and Machine Learning
In apple cultivation, the total nitrogen content is an important indicator of plant growth, fruit quality, and yield. Timely monitoring of growth becomes imperative, since an imbalance, either in deficiency or excess nitrogen, can result in physiological disorders, adversely impacting both the quantity and quality of fruit. Leaf nitrogen content can be determined using simple chlorophyll meters or destructive testing; however, these methods are time-consuming. However, by employing spectral imaging technology, it is possible to swiftly predict leaf nitrogen content. This study estimated the total nitrogen content in apple trees via hyperspectral imaging and machine learning-based regression analysis (partial least-squares regression (PLSR), support vector regression (SVR), and eXtreme gradient boosting regression (XGBoost). Additionally, to reduce computational costs and improve reproducibility, spectral binning was divided into three stages (4, 8, and 16 bins), and models were compared with a 2-binning estimation model. The analysis focused on green, red, red edge, and near-infrared (NIR) spectra, with 5–10 selected wavelengths, and the SVR-based prediction model showed a similar or greater performance to that of the full spectrum. At 4- and 8-binning, the selected wavelengths were similar to those at 2-binning, maintaining similar prediction model performance. However, at 16 bp, the performance of the prediction model decreased owing to spectral data loss, leading to a significant reduction in wavelengths for nitrogen content estimation. These results can support informed nitrogen fertilization decisions, enabling precise, real-time monitoring of nitrogen content for enhanced plant growth, fruit quality, and yield in apple trees. Additionally, the selected wavelengths can be considered in the development of new types of multispectral sensors.
期刊介绍:
Horticulturae (ISSN 2311-7524) is an international, multidisciplinary, peer-reviewed, open access journal focusing on all areas and aspects of temperate to tropical horticulture. It publishes original empirical and theoretical research articles, short communications, reviews, and opinion articles. We intend to encourage scientists to publish and communicate their results concerning all branches of horticulture in a timely manner and in an open venue, after being evaluated by the journal editors and randomly selected independent expert reviewers, so that all articles will never be judged in relation to how much they confirm or criticize the opinions of other researchers.