{"title":"具有部分变分结构的系统的纳什型均衡局部化","authors":"Andrei Stan","doi":"10.33993/jnaat522-1356","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to generalize an existing result by obtaining localized solutions within bounded convex sets, while also relaxing specific initial assumptions. To achieve this, we employ an iterative scheme that combines a fixed-point argument based on the Minty-Browder Theorem with a modified version of the Ekeland variational principle for bounded sets. An application to a system of second-order differential equations with Dirichlet boundary conditions is presented.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"64 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization of Nash-type equilibria for systems with partial variational structure\",\"authors\":\"Andrei Stan\",\"doi\":\"10.33993/jnaat522-1356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we aim to generalize an existing result by obtaining localized solutions within bounded convex sets, while also relaxing specific initial assumptions. To achieve this, we employ an iterative scheme that combines a fixed-point argument based on the Minty-Browder Theorem with a modified version of the Ekeland variational principle for bounded sets. An application to a system of second-order differential equations with Dirichlet boundary conditions is presented.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"64 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat522-1356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat522-1356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localization of Nash-type equilibria for systems with partial variational structure
In this paper, we aim to generalize an existing result by obtaining localized solutions within bounded convex sets, while also relaxing specific initial assumptions. To achieve this, we employ an iterative scheme that combines a fixed-point argument based on the Minty-Browder Theorem with a modified version of the Ekeland variational principle for bounded sets. An application to a system of second-order differential equations with Dirichlet boundary conditions is presented.