利用哨兵-2A 图像估算西龙目岛拉邦特伦红树林地区的林分碳储量

Moh Rodiansyah Hambali, A. C. Ichsan, Niechi Valentino, Andrie Ridzki Prasetyo
{"title":"利用哨兵-2A 图像估算西龙目岛拉邦特伦红树林地区的林分碳储量","authors":"Moh Rodiansyah Hambali, A. C. Ichsan, Niechi Valentino, Andrie Ridzki Prasetyo","doi":"10.29303/jstl.v9i4.522","DOIUrl":null,"url":null,"abstract":"The primary worry in addressing climate change problems is the elevation in global temperatures resulting from the growing levels of CO2 emissions in the atmosphere. Mangrove ecosystems contribute to the \"blue carbon\" plan which is capable of storing carbon well, this research was conducted to assess carbon storage within the mangrove forest ecosystem by combining Sentinel-2A satellite imagery with on-site field measurements. The data analysis findings indicate the presence of six distinct mangrove varieties, namely R. mucronata, A. marina, R. apiculata, S. alba, E. agallocha, and C. decandra. The R. mucronata type is the type that dominates the mangrove area with an average carbon amount of 122.1 tonnes/ha. Correlation analysis shows a strong relationship between IKVm and mangrove forest carbon stocks, with a correlation coefficient value of 80%. In the regression model, the power model provides the best equation for estimating carbon stocks with a coefficient of determination value of 64.4% giving a model equation of y = 109.51x1.2381. Analysis of image carbon reserves obtained the lowest value, namely 0.02-10.46 tonnes/ha which was in the very rare vegetation density type and the highest carbon reserve value was 58.30-59.02 tonnes/ha in the very high density class.","PeriodicalId":274989,"journal":{"name":"JURNAL SAINS TEKNOLOGI & LINGKUNGAN","volume":"34 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimasi Simpanan Karbon Tegakan Menggunakan Citra Sentinel-2A Pada Kawasan Mangrove Labuan Tereng Kabupaten Lombok Barat\",\"authors\":\"Moh Rodiansyah Hambali, A. C. Ichsan, Niechi Valentino, Andrie Ridzki Prasetyo\",\"doi\":\"10.29303/jstl.v9i4.522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary worry in addressing climate change problems is the elevation in global temperatures resulting from the growing levels of CO2 emissions in the atmosphere. Mangrove ecosystems contribute to the \\\"blue carbon\\\" plan which is capable of storing carbon well, this research was conducted to assess carbon storage within the mangrove forest ecosystem by combining Sentinel-2A satellite imagery with on-site field measurements. The data analysis findings indicate the presence of six distinct mangrove varieties, namely R. mucronata, A. marina, R. apiculata, S. alba, E. agallocha, and C. decandra. The R. mucronata type is the type that dominates the mangrove area with an average carbon amount of 122.1 tonnes/ha. Correlation analysis shows a strong relationship between IKVm and mangrove forest carbon stocks, with a correlation coefficient value of 80%. In the regression model, the power model provides the best equation for estimating carbon stocks with a coefficient of determination value of 64.4% giving a model equation of y = 109.51x1.2381. Analysis of image carbon reserves obtained the lowest value, namely 0.02-10.46 tonnes/ha which was in the very rare vegetation density type and the highest carbon reserve value was 58.30-59.02 tonnes/ha in the very high density class.\",\"PeriodicalId\":274989,\"journal\":{\"name\":\"JURNAL SAINS TEKNOLOGI & LINGKUNGAN\",\"volume\":\"34 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JURNAL SAINS TEKNOLOGI & LINGKUNGAN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29303/jstl.v9i4.522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL SAINS TEKNOLOGI & LINGKUNGAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/jstl.v9i4.522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决气候变化问题的首要问题是大气中二氧化碳排放量的增加导致全球气温升高。红树林生态系统为 "蓝碳 "计划做出了贡献,能够很好地储存碳。本研究通过将哨兵-2A 卫星图像与现场实地测量相结合,对红树林生态系统的碳储存进行了评估。数据分析结果表明,红树林有六种不同的类型,即 R. mucronata、A. marina、R. apiculata、S. alba、E. agallocha 和 C. decandra。R. mucronata 类型是红树林区域的主要类型,平均碳含量为 122.1 吨/公顷。相关分析表明,IKVm 与红树林碳储量关系密切,相关系数高达 80%。在回归模型中,幂模型提供了估算碳储量的最佳方程,其决定系数为 64.4%,模型方程为 y=109.51x1.2381。图像碳储量分析得出的最低值为 0.02-10.46 吨/公顷,属于极稀有植被密度类型,最高碳储量值为 58.30-59.02 吨/公顷,属于极高密度类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimasi Simpanan Karbon Tegakan Menggunakan Citra Sentinel-2A Pada Kawasan Mangrove Labuan Tereng Kabupaten Lombok Barat
The primary worry in addressing climate change problems is the elevation in global temperatures resulting from the growing levels of CO2 emissions in the atmosphere. Mangrove ecosystems contribute to the "blue carbon" plan which is capable of storing carbon well, this research was conducted to assess carbon storage within the mangrove forest ecosystem by combining Sentinel-2A satellite imagery with on-site field measurements. The data analysis findings indicate the presence of six distinct mangrove varieties, namely R. mucronata, A. marina, R. apiculata, S. alba, E. agallocha, and C. decandra. The R. mucronata type is the type that dominates the mangrove area with an average carbon amount of 122.1 tonnes/ha. Correlation analysis shows a strong relationship between IKVm and mangrove forest carbon stocks, with a correlation coefficient value of 80%. In the regression model, the power model provides the best equation for estimating carbon stocks with a coefficient of determination value of 64.4% giving a model equation of y = 109.51x1.2381. Analysis of image carbon reserves obtained the lowest value, namely 0.02-10.46 tonnes/ha which was in the very rare vegetation density type and the highest carbon reserve value was 58.30-59.02 tonnes/ha in the very high density class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信