麦基代数的派生

IF 1 Q1 MATHEMATICS
O. Bezushchak
{"title":"麦基代数的派生","authors":"O. Bezushchak","doi":"10.15330/cmp.15.2.559-562","DOIUrl":null,"url":null,"abstract":"We describe derivations of finitary Mackey algebras over fields of characteristics not equal to $2.$ We prove that an arbitrary derivation of an associative finitary Mackey algebra or one of the Lie algebras $\\mathfrak{sl}_{\\infty}(V|W)$, $\\mathfrak{o}_{\\infty}(f)$ is an adjoint operator of an element in the corresponding Mackey algebra. It provides description of derivations of all algebras in the Baranov-Strade classification of finitary simple Lie algebras. The proof is based on N. Jacobson's result on derivations of associative algebras of linear transformations of an infinite-dimensional vector space and the results on Herstein's conjectures.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivations of Mackey algebras\",\"authors\":\"O. Bezushchak\",\"doi\":\"10.15330/cmp.15.2.559-562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe derivations of finitary Mackey algebras over fields of characteristics not equal to $2.$ We prove that an arbitrary derivation of an associative finitary Mackey algebra or one of the Lie algebras $\\\\mathfrak{sl}_{\\\\infty}(V|W)$, $\\\\mathfrak{o}_{\\\\infty}(f)$ is an adjoint operator of an element in the corresponding Mackey algebra. It provides description of derivations of all algebras in the Baranov-Strade classification of finitary simple Lie algebras. The proof is based on N. Jacobson's result on derivations of associative algebras of linear transformations of an infinite-dimensional vector space and the results on Herstein's conjectures.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.559-562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.559-562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了特征不等于 2 元的域上有限麦基代数的导数。我们证明了关联有限麦基代数或列代数 $\mathfrak{sl}_{\infty}(V|W)$, $\mathfrak{o}_\{infty}(f)$ 的任意导数是相应麦基代数中一个元素的邻接算子。它描述了巴拉诺夫-斯垂德有限简单李代数分类中所有代数的派生。证明基于雅各布森(N. Jacobson)关于无穷维向量空间线性变换关联代数的推导结果以及赫斯坦猜想的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivations of Mackey algebras
We describe derivations of finitary Mackey algebras over fields of characteristics not equal to $2.$ We prove that an arbitrary derivation of an associative finitary Mackey algebra or one of the Lie algebras $\mathfrak{sl}_{\infty}(V|W)$, $\mathfrak{o}_{\infty}(f)$ is an adjoint operator of an element in the corresponding Mackey algebra. It provides description of derivations of all algebras in the Baranov-Strade classification of finitary simple Lie algebras. The proof is based on N. Jacobson's result on derivations of associative algebras of linear transformations of an infinite-dimensional vector space and the results on Herstein's conjectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信