{"title":"麦基代数的派生","authors":"O. Bezushchak","doi":"10.15330/cmp.15.2.559-562","DOIUrl":null,"url":null,"abstract":"We describe derivations of finitary Mackey algebras over fields of characteristics not equal to $2.$ We prove that an arbitrary derivation of an associative finitary Mackey algebra or one of the Lie algebras $\\mathfrak{sl}_{\\infty}(V|W)$, $\\mathfrak{o}_{\\infty}(f)$ is an adjoint operator of an element in the corresponding Mackey algebra. It provides description of derivations of all algebras in the Baranov-Strade classification of finitary simple Lie algebras. The proof is based on N. Jacobson's result on derivations of associative algebras of linear transformations of an infinite-dimensional vector space and the results on Herstein's conjectures.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivations of Mackey algebras\",\"authors\":\"O. Bezushchak\",\"doi\":\"10.15330/cmp.15.2.559-562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe derivations of finitary Mackey algebras over fields of characteristics not equal to $2.$ We prove that an arbitrary derivation of an associative finitary Mackey algebra or one of the Lie algebras $\\\\mathfrak{sl}_{\\\\infty}(V|W)$, $\\\\mathfrak{o}_{\\\\infty}(f)$ is an adjoint operator of an element in the corresponding Mackey algebra. It provides description of derivations of all algebras in the Baranov-Strade classification of finitary simple Lie algebras. The proof is based on N. Jacobson's result on derivations of associative algebras of linear transformations of an infinite-dimensional vector space and the results on Herstein's conjectures.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.559-562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.559-562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We describe derivations of finitary Mackey algebras over fields of characteristics not equal to $2.$ We prove that an arbitrary derivation of an associative finitary Mackey algebra or one of the Lie algebras $\mathfrak{sl}_{\infty}(V|W)$, $\mathfrak{o}_{\infty}(f)$ is an adjoint operator of an element in the corresponding Mackey algebra. It provides description of derivations of all algebras in the Baranov-Strade classification of finitary simple Lie algebras. The proof is based on N. Jacobson's result on derivations of associative algebras of linear transformations of an infinite-dimensional vector space and the results on Herstein's conjectures.