{"title":"利用频域线性化纳维-斯托克斯方程预测带流穿孔反应式和耗散式消声器的声衰减","authors":"Zhirong He, Zhenlin Ji, Hongpu Huang","doi":"10.20855/ijav.2023.28.41981","DOIUrl":null,"url":null,"abstract":"To comprehensively consider the impact of complex airflow on sound propagation, a numerical approach by solving the three-dimensional (3-D) frequency-domain linearized Navier-Stokes equations (LNSEs) is proposed to accurately predict the transmission losses of perforated tube reactive and dissipative mufflers in the presence of complex airflow. The numerical computations are performed in two steps: (1) solve the time averaged flow by steady-state computational fluid dynamics (CFD) simulation and then map the results into acoustic mesh; (2) treat sound-absorbing material as an equivalent fluid and obtain acoustic perturbation variables by solving the frequency-domain LNSEs. The transmission losses of perforated tube reactive and dissipative mufflers are measured in the presence of flow and compared with the numerical predictions. The excellent consistencies between predictions and measurements validate the present approach. The influence of Mach number on acoustic attenuation performance of perforated tube reactive and dissipative mufflers is then investigated. With Mach number increases, the transmission loss of perforated tube reactive muffler increases somewhat, while the transmission loss of dissipative mufflers decreases obviously in the lower frequency range and change is limited at higher frequencies.","PeriodicalId":131358,"journal":{"name":"The International Journal of Acoustics and Vibration","volume":"52 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic Attenuation Prediction of Perforated Reactive and Dissipative Mufflers With Flow by Using Frequency-Domain Linearized Navier-Stokes Equations\",\"authors\":\"Zhirong He, Zhenlin Ji, Hongpu Huang\",\"doi\":\"10.20855/ijav.2023.28.41981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To comprehensively consider the impact of complex airflow on sound propagation, a numerical approach by solving the three-dimensional (3-D) frequency-domain linearized Navier-Stokes equations (LNSEs) is proposed to accurately predict the transmission losses of perforated tube reactive and dissipative mufflers in the presence of complex airflow. The numerical computations are performed in two steps: (1) solve the time averaged flow by steady-state computational fluid dynamics (CFD) simulation and then map the results into acoustic mesh; (2) treat sound-absorbing material as an equivalent fluid and obtain acoustic perturbation variables by solving the frequency-domain LNSEs. The transmission losses of perforated tube reactive and dissipative mufflers are measured in the presence of flow and compared with the numerical predictions. The excellent consistencies between predictions and measurements validate the present approach. The influence of Mach number on acoustic attenuation performance of perforated tube reactive and dissipative mufflers is then investigated. With Mach number increases, the transmission loss of perforated tube reactive muffler increases somewhat, while the transmission loss of dissipative mufflers decreases obviously in the lower frequency range and change is limited at higher frequencies.\",\"PeriodicalId\":131358,\"journal\":{\"name\":\"The International Journal of Acoustics and Vibration\",\"volume\":\"52 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20855/ijav.2023.28.41981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20855/ijav.2023.28.41981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acoustic Attenuation Prediction of Perforated Reactive and Dissipative Mufflers With Flow by Using Frequency-Domain Linearized Navier-Stokes Equations
To comprehensively consider the impact of complex airflow on sound propagation, a numerical approach by solving the three-dimensional (3-D) frequency-domain linearized Navier-Stokes equations (LNSEs) is proposed to accurately predict the transmission losses of perforated tube reactive and dissipative mufflers in the presence of complex airflow. The numerical computations are performed in two steps: (1) solve the time averaged flow by steady-state computational fluid dynamics (CFD) simulation and then map the results into acoustic mesh; (2) treat sound-absorbing material as an equivalent fluid and obtain acoustic perturbation variables by solving the frequency-domain LNSEs. The transmission losses of perforated tube reactive and dissipative mufflers are measured in the presence of flow and compared with the numerical predictions. The excellent consistencies between predictions and measurements validate the present approach. The influence of Mach number on acoustic attenuation performance of perforated tube reactive and dissipative mufflers is then investigated. With Mach number increases, the transmission loss of perforated tube reactive muffler increases somewhat, while the transmission loss of dissipative mufflers decreases obviously in the lower frequency range and change is limited at higher frequencies.