具有非线性边界流出的半线性抛物方程离散化的淬火问题

Kouakou Cyrille N'Dri, Ardjouma Ganon, G. Yoro, K. A. Touré
{"title":"具有非线性边界流出的半线性抛物方程离散化的淬火问题","authors":"Kouakou Cyrille N'Dri, Ardjouma Ganon, G. Yoro, K. A. Touré","doi":"10.33993/jnaat522-1325","DOIUrl":null,"url":null,"abstract":"In this paper, we study numerical approximations of a semilinear parabolic problem in one-dimension, of which the nonlinearity appears both in source term and in Neumann boundary condition. By a semidiscretization using finite difference method, we obtain a system of ordinary differential equations which is an approximation of the original problem. We obtain some conditions under which the positive solution of our system quenches in a finite time and estimate its semidiscrete quenching time. Convergence of the numerical quenching time to the theoretical one is established. Next, we show that the quenching rate of the numerical scheme is different from the continuous one. Finally, we give some numerical results to illustrate our analysis.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"142 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quenching for discretizations of a semilinear parabolic equation with nonlinear boundary outflux\",\"authors\":\"Kouakou Cyrille N'Dri, Ardjouma Ganon, G. Yoro, K. A. Touré\",\"doi\":\"10.33993/jnaat522-1325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study numerical approximations of a semilinear parabolic problem in one-dimension, of which the nonlinearity appears both in source term and in Neumann boundary condition. By a semidiscretization using finite difference method, we obtain a system of ordinary differential equations which is an approximation of the original problem. We obtain some conditions under which the positive solution of our system quenches in a finite time and estimate its semidiscrete quenching time. Convergence of the numerical quenching time to the theoretical one is established. Next, we show that the quenching rate of the numerical scheme is different from the continuous one. Finally, we give some numerical results to illustrate our analysis.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"142 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat522-1325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat522-1325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一维半线性抛物线问题的数值近似,该问题的非线性同时出现在源项和诺伊曼边界条件中。通过使用有限差分法进行半具体化,我们得到了一个常微分方程系,它是原问题的近似值。我们得到了系统正解在有限时间内淬火的一些条件,并估算了其半离散淬火时间。我们确定了数值淬火时间对理论淬火时间的收敛性。接下来,我们证明了数值方案的淬火速率与连续方案不同。最后,我们给出了一些数值结果来说明我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quenching for discretizations of a semilinear parabolic equation with nonlinear boundary outflux
In this paper, we study numerical approximations of a semilinear parabolic problem in one-dimension, of which the nonlinearity appears both in source term and in Neumann boundary condition. By a semidiscretization using finite difference method, we obtain a system of ordinary differential equations which is an approximation of the original problem. We obtain some conditions under which the positive solution of our system quenches in a finite time and estimate its semidiscrete quenching time. Convergence of the numerical quenching time to the theoretical one is established. Next, we show that the quenching rate of the numerical scheme is different from the continuous one. Finally, we give some numerical results to illustrate our analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信