卷积 Volterra 积分方程的振荡解法

Henry Otoo, W. Obeng-Denteh, Lewis Brew
{"title":"卷积 Volterra 积分方程的振荡解法","authors":"Henry Otoo, W. Obeng-Denteh, Lewis Brew","doi":"10.9734/arjom/2023/v19i12772","DOIUrl":null,"url":null,"abstract":"Oscillatory solutions play a pivotal role in understanding functional differential and integral equations, offering insights into the behaviour of these equations' solutions, and assisting in understanding their growth, stability, and convergence properties. This study establishes the oscillatory solution of a convolutional Volterra integral equation using mathematical proofs. Theorems for oscillatory solutions are proposed and proven based on well-defined assumptions, along with an illustrated example. The proofs presented herein reveal that the convolutional Volterra integral equation can exhibit oscillatory or non-oscillatory behavior, contingent upon the characteristics of the function within the integral.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory Solution of a Convolutional Volterra Integral Equation\",\"authors\":\"Henry Otoo, W. Obeng-Denteh, Lewis Brew\",\"doi\":\"10.9734/arjom/2023/v19i12772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oscillatory solutions play a pivotal role in understanding functional differential and integral equations, offering insights into the behaviour of these equations' solutions, and assisting in understanding their growth, stability, and convergence properties. This study establishes the oscillatory solution of a convolutional Volterra integral equation using mathematical proofs. Theorems for oscillatory solutions are proposed and proven based on well-defined assumptions, along with an illustrated example. The proofs presented herein reveal that the convolutional Volterra integral equation can exhibit oscillatory or non-oscillatory behavior, contingent upon the characteristics of the function within the integral.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i12772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i12772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

振荡解在理解函数微分方程和积分方程方面起着举足轻重的作用,它提供了对这些方程的解的行为的洞察力,并有助于理解它们的增长、稳定性和收敛特性。本研究通过数学证明建立了卷积 Volterra 积分方程的振荡解。基于定义明确的假设,提出并证明了振荡解的定理,并举例说明。本文提出的证明揭示了卷积 Volterra 积分方程可以表现出振荡或非振荡行为,这取决于积分内函数的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillatory Solution of a Convolutional Volterra Integral Equation
Oscillatory solutions play a pivotal role in understanding functional differential and integral equations, offering insights into the behaviour of these equations' solutions, and assisting in understanding their growth, stability, and convergence properties. This study establishes the oscillatory solution of a convolutional Volterra integral equation using mathematical proofs. Theorems for oscillatory solutions are proposed and proven based on well-defined assumptions, along with an illustrated example. The proofs presented herein reveal that the convolutional Volterra integral equation can exhibit oscillatory or non-oscillatory behavior, contingent upon the characteristics of the function within the integral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信