释放数据潜力:南加里曼丹省减少发育迟缓的本地化数据驱动方法

F. Rizkiah
{"title":"释放数据潜力:南加里曼丹省减少发育迟缓的本地化数据驱动方法","authors":"F. Rizkiah","doi":"10.34123/icdsos.v2023i1.394","DOIUrl":null,"url":null,"abstract":"This study addresses the issue of stunting in South Kalimantan Province, where high stunting prevalence rates persist. Through a comprehensive analysis of factors influencing stunting prevalence, predictive modeling using machine learning, and clustering analysis of districts based on stunting rates, the research aims to support the provincial government in formulating effective and sustainable strategies. The findings highlight influential factors such as HDI, poverty rates, immunization coverage, breasfed babies, number of uninhabitable houses, and access to clean water. The study also utilise machine learning to build model that aids in predicting future stunting prevalence, while clustering analysis categorizes districts into distinct groups. These insights guide the government in prioritizing interventions, setting prevalence targets, and determining strategic areas for stunting reduction efforts.","PeriodicalId":151043,"journal":{"name":"Proceedings of The International Conference on Data Science and Official Statistics","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking potential of data: A localized data-driven approach for stunting reduction in South Kalimantan Province\",\"authors\":\"F. Rizkiah\",\"doi\":\"10.34123/icdsos.v2023i1.394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the issue of stunting in South Kalimantan Province, where high stunting prevalence rates persist. Through a comprehensive analysis of factors influencing stunting prevalence, predictive modeling using machine learning, and clustering analysis of districts based on stunting rates, the research aims to support the provincial government in formulating effective and sustainable strategies. The findings highlight influential factors such as HDI, poverty rates, immunization coverage, breasfed babies, number of uninhabitable houses, and access to clean water. The study also utilise machine learning to build model that aids in predicting future stunting prevalence, while clustering analysis categorizes districts into distinct groups. These insights guide the government in prioritizing interventions, setting prevalence targets, and determining strategic areas for stunting reduction efforts.\",\"PeriodicalId\":151043,\"journal\":{\"name\":\"Proceedings of The International Conference on Data Science and Official Statistics\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The International Conference on Data Science and Official Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34123/icdsos.v2023i1.394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The International Conference on Data Science and Official Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34123/icdsos.v2023i1.394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了南加里曼丹省发育迟缓问题,该省的发育迟缓发病率居高不下。通过全面分析发育迟缓发生率的影响因素、使用机器学习进行预测建模以及根据发育迟缓发生率对地区进行聚类分析,本研究旨在支持省政府制定有效的可持续战略。研究结果强调了人类发展指数、贫困率、免疫接种覆盖率、母乳喂养婴儿、不适合居住的房屋数量以及清洁水的获取等影响因素。研究还利用机器学习建立模型,帮助预测未来的发育迟缓发生率,同时通过聚类分析将地区划分为不同的组别。这些见解为政府确定干预措施的优先次序、设定患病率目标以及确定减少发育迟缓的战略区域提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking potential of data: A localized data-driven approach for stunting reduction in South Kalimantan Province
This study addresses the issue of stunting in South Kalimantan Province, where high stunting prevalence rates persist. Through a comprehensive analysis of factors influencing stunting prevalence, predictive modeling using machine learning, and clustering analysis of districts based on stunting rates, the research aims to support the provincial government in formulating effective and sustainable strategies. The findings highlight influential factors such as HDI, poverty rates, immunization coverage, breasfed babies, number of uninhabitable houses, and access to clean water. The study also utilise machine learning to build model that aids in predicting future stunting prevalence, while clustering analysis categorizes districts into distinct groups. These insights guide the government in prioritizing interventions, setting prevalence targets, and determining strategic areas for stunting reduction efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信