自主飞行挖掘机的设计与控制

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Machines Pub Date : 2023-12-29 DOI:10.3390/machines12010023
A. Zaman, Jaho Seo
{"title":"自主飞行挖掘机的设计与控制","authors":"A. Zaman, Jaho Seo","doi":"10.3390/machines12010023","DOIUrl":null,"url":null,"abstract":"This study presents a drone-based excavation platform prototype with the key objectives of balancing stability during excavation, sensing, and digging the soil pile autonomously without human intervention. The whole platform was first designed in CAD software, and then each part of the excavator assembly was 3D printed by using PLA filament. The physical system was then combined with numerous electronic components and linked to various software applications for a drone to perform autonomous excavations. Pixhawk Orange Cube served as the main controller for the drone, while Nvidia Jetson Nano was used for processing data and controlling the tip of the bucket at a specified location for the autonomous excavator. Two scenarios were considered to validate the functionality of the developed platform. In the first scenario, the drone flies independently to a construction site, lands, senses the soil, excavates it, and then travels to another location specified by the mission to deposit the soil.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"79 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Control of Autonomous Flying Excavator\",\"authors\":\"A. Zaman, Jaho Seo\",\"doi\":\"10.3390/machines12010023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a drone-based excavation platform prototype with the key objectives of balancing stability during excavation, sensing, and digging the soil pile autonomously without human intervention. The whole platform was first designed in CAD software, and then each part of the excavator assembly was 3D printed by using PLA filament. The physical system was then combined with numerous electronic components and linked to various software applications for a drone to perform autonomous excavations. Pixhawk Orange Cube served as the main controller for the drone, while Nvidia Jetson Nano was used for processing data and controlling the tip of the bucket at a specified location for the autonomous excavator. Two scenarios were considered to validate the functionality of the developed platform. In the first scenario, the drone flies independently to a construction site, lands, senses the soil, excavates it, and then travels to another location specified by the mission to deposit the soil.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"79 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12010023\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12010023","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于无人机的挖掘平台原型,其主要目标是在挖掘过程中平衡稳定性、传感以及在无人干预的情况下自主挖掘土堆。首先在 CAD 软件中设计了整个平台,然后使用 PLA 长丝 3D 打印了挖掘机组件的各个部分。然后将物理系统与众多电子元件相结合,并与各种软件应用程序相连接,使无人机能够进行自主挖掘。Pixhawk Orange Cube 是无人机的主控制器,而 Nvidia Jetson Nano 则用于处理数据和控制自主挖掘机指定位置的铲斗尖端。为了验证所开发平台的功能,我们考虑了两种情况。在第一个场景中,无人机独立飞往建筑工地,着陆、感知土壤、挖掘土壤,然后飞往任务指定的另一个地点堆放土壤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Control of Autonomous Flying Excavator
This study presents a drone-based excavation platform prototype with the key objectives of balancing stability during excavation, sensing, and digging the soil pile autonomously without human intervention. The whole platform was first designed in CAD software, and then each part of the excavator assembly was 3D printed by using PLA filament. The physical system was then combined with numerous electronic components and linked to various software applications for a drone to perform autonomous excavations. Pixhawk Orange Cube served as the main controller for the drone, while Nvidia Jetson Nano was used for processing data and controlling the tip of the bucket at a specified location for the autonomous excavator. Two scenarios were considered to validate the functionality of the developed platform. In the first scenario, the drone flies independently to a construction site, lands, senses the soil, excavates it, and then travels to another location specified by the mission to deposit the soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信