{"title":"2-2 型水泥基压电复合传感器机电响应特性的实验和模拟研究","authors":"Haiwei Dong, Bohan Ma, Ziye Zhu, Zhe Li, Xiaokun Yang, Jiangying Chen","doi":"10.1177/1045389x231216847","DOIUrl":null,"url":null,"abstract":"In the manuscript, the piezoelectric functional element was prepared by slicing and adding method using piezoelectric ceramic PZT-5H and ordinary silicate cement 42.5 was as base materials, and then a 2-2 type cement-based piezoelectric composite sensor was prepared by an encapsulated epoxy resin. The experimental and simulation analysis was carried out to obtain the quasi-static linear sensitivity of the electromechanical response of the sample under conditions of compressive loading. The development process of the sample from local failure to overall fragmentation was observed using a high-speed camera. Found that the electrical nonlinear threshold of 35 MPa appeared before the mechanical nonlinear threshold. Further, the results showed that when the loading frequency was increased from 5 to 15 Hz under equal amplitude, the response waveform remained unchanged, however, the electrical displacement was attenuated by 19.7%. Packaging schemes using various lengths and thicknesses of an epoxy layer were conducted by using simulation. It is indicated that, under the premise of ensuring the protection package and considering the manufacturing process, the length of the package side could increase appropriately, and the single-side package side length is set to 4 mm. When the thickness of the package layer becomes less, it would be better.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"51 S257","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimentation and simulation study of electromechanical response characteristics of a 2-2 type cement-based piezoelectric composite sensor\",\"authors\":\"Haiwei Dong, Bohan Ma, Ziye Zhu, Zhe Li, Xiaokun Yang, Jiangying Chen\",\"doi\":\"10.1177/1045389x231216847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the manuscript, the piezoelectric functional element was prepared by slicing and adding method using piezoelectric ceramic PZT-5H and ordinary silicate cement 42.5 was as base materials, and then a 2-2 type cement-based piezoelectric composite sensor was prepared by an encapsulated epoxy resin. The experimental and simulation analysis was carried out to obtain the quasi-static linear sensitivity of the electromechanical response of the sample under conditions of compressive loading. The development process of the sample from local failure to overall fragmentation was observed using a high-speed camera. Found that the electrical nonlinear threshold of 35 MPa appeared before the mechanical nonlinear threshold. Further, the results showed that when the loading frequency was increased from 5 to 15 Hz under equal amplitude, the response waveform remained unchanged, however, the electrical displacement was attenuated by 19.7%. Packaging schemes using various lengths and thicknesses of an epoxy layer were conducted by using simulation. It is indicated that, under the premise of ensuring the protection package and considering the manufacturing process, the length of the package side could increase appropriately, and the single-side package side length is set to 4 mm. When the thickness of the package layer becomes less, it would be better.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"51 S257\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x231216847\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231216847","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimentation and simulation study of electromechanical response characteristics of a 2-2 type cement-based piezoelectric composite sensor
In the manuscript, the piezoelectric functional element was prepared by slicing and adding method using piezoelectric ceramic PZT-5H and ordinary silicate cement 42.5 was as base materials, and then a 2-2 type cement-based piezoelectric composite sensor was prepared by an encapsulated epoxy resin. The experimental and simulation analysis was carried out to obtain the quasi-static linear sensitivity of the electromechanical response of the sample under conditions of compressive loading. The development process of the sample from local failure to overall fragmentation was observed using a high-speed camera. Found that the electrical nonlinear threshold of 35 MPa appeared before the mechanical nonlinear threshold. Further, the results showed that when the loading frequency was increased from 5 to 15 Hz under equal amplitude, the response waveform remained unchanged, however, the electrical displacement was attenuated by 19.7%. Packaging schemes using various lengths and thicknesses of an epoxy layer were conducted by using simulation. It is indicated that, under the premise of ensuring the protection package and considering the manufacturing process, the length of the package side could increase appropriately, and the single-side package side length is set to 4 mm. When the thickness of the package layer becomes less, it would be better.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.