Derek J. Dalle, Stuart E. Rogers, Jamie G. Meeroff, Aaron C. Burkhead, D. Schauerhamer, Joshua F. Diaz
{"title":"用于太空发射系统的运载火箭上升计算流体动力学","authors":"Derek J. Dalle, Stuart E. Rogers, Jamie G. Meeroff, Aaron C. Burkhead, D. Schauerhamer, Joshua F. Diaz","doi":"10.2514/1.a35809","DOIUrl":null,"url":null,"abstract":"This paper will discuss the use of computational fluid dynamics (CFD) for the Space Launch System (SLS) program to model the ascent phase of flight. The ascent phase begins shortly after the vehicle clears the launch tower and extends to the first staging event. To model SLS’s ascent, over 1000 numerical solutions of the Navier–Stokes equations were solved, and this analysis has been repeated for five different SLS configurations. To manage this demanding ascent CFD task, the SLS program has developed the Computational Aerosciences Productivity & Execution software. The paper also discusses some of the ways that CFD and high-end computing have advanced in the last decade and offers some comparisons to CFD used in the Space Shuttle Program.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"54 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Launch Vehicle Ascent Computational Fluid Dynamics for the Space Launch System\",\"authors\":\"Derek J. Dalle, Stuart E. Rogers, Jamie G. Meeroff, Aaron C. Burkhead, D. Schauerhamer, Joshua F. Diaz\",\"doi\":\"10.2514/1.a35809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will discuss the use of computational fluid dynamics (CFD) for the Space Launch System (SLS) program to model the ascent phase of flight. The ascent phase begins shortly after the vehicle clears the launch tower and extends to the first staging event. To model SLS’s ascent, over 1000 numerical solutions of the Navier–Stokes equations were solved, and this analysis has been repeated for five different SLS configurations. To manage this demanding ascent CFD task, the SLS program has developed the Computational Aerosciences Productivity & Execution software. The paper also discusses some of the ways that CFD and high-end computing have advanced in the last decade and offers some comparisons to CFD used in the Space Shuttle Program.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\"54 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35809\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35809","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Launch Vehicle Ascent Computational Fluid Dynamics for the Space Launch System
This paper will discuss the use of computational fluid dynamics (CFD) for the Space Launch System (SLS) program to model the ascent phase of flight. The ascent phase begins shortly after the vehicle clears the launch tower and extends to the first staging event. To model SLS’s ascent, over 1000 numerical solutions of the Navier–Stokes equations were solved, and this analysis has been repeated for five different SLS configurations. To manage this demanding ascent CFD task, the SLS program has developed the Computational Aerosciences Productivity & Execution software. The paper also discusses some of the ways that CFD and high-end computing have advanced in the last decade and offers some comparisons to CFD used in the Space Shuttle Program.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.