基于深度学习技术的电子商务评论情感分析和购买意向预测

IF 3.6 3区 管理学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoye Ma, Yanyan Li, Muhammad Asif
{"title":"基于深度学习技术的电子商务评论情感分析和购买意向预测","authors":"Xiaoye Ma, Yanyan Li, Muhammad Asif","doi":"10.4018/joeuc.335122","DOIUrl":null,"url":null,"abstract":"This study proposes a deep learning-based analytical model to conduct an in-depth study of the relationship between consumer trust, perceived benefits, and purchase intention. This model combines natural language processing and sentiment analysis, using the BERT-LSTNet-Softmax model to extract textual features in reviews and perform temporal predictions of consumer sentiment and purchase intention. Experimental results show that this model achieves excellent performance in the e-commerce field and provides a powerful tool for in-depth understanding of consumer purchasing decisions. This research promotes the application of deep learning technology in the field of e-commerce, helps to improve the accuracy of consumer purchase intentions, and provides more support for the development of the e-commerce market and consumer decision-making.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"47 S222","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-Commerce Review Sentiment Analysis and Purchase Intention Prediction Based on Deep Learning Technology\",\"authors\":\"Xiaoye Ma, Yanyan Li, Muhammad Asif\",\"doi\":\"10.4018/joeuc.335122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a deep learning-based analytical model to conduct an in-depth study of the relationship between consumer trust, perceived benefits, and purchase intention. This model combines natural language processing and sentiment analysis, using the BERT-LSTNet-Softmax model to extract textual features in reviews and perform temporal predictions of consumer sentiment and purchase intention. Experimental results show that this model achieves excellent performance in the e-commerce field and provides a powerful tool for in-depth understanding of consumer purchasing decisions. This research promotes the application of deep learning technology in the field of e-commerce, helps to improve the accuracy of consumer purchase intentions, and provides more support for the development of the e-commerce market and consumer decision-making.\",\"PeriodicalId\":49029,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"47 S222\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.335122\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.335122","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于深度学习的分析模型,以深入研究消费者信任、感知利益和购买意向之间的关系。该模型结合了自然语言处理和情感分析,使用 BERT-LSTNet-Softmax 模型提取评论中的文本特征,并对消费者情感和购买意向进行时序预测。实验结果表明,该模型在电子商务领域表现出色,为深入了解消费者的购买决策提供了有力工具。该研究推动了深度学习技术在电子商务领域的应用,有助于提高消费者购买意向的准确性,为电子商务市场的发展和消费者决策提供更多支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-Commerce Review Sentiment Analysis and Purchase Intention Prediction Based on Deep Learning Technology
This study proposes a deep learning-based analytical model to conduct an in-depth study of the relationship between consumer trust, perceived benefits, and purchase intention. This model combines natural language processing and sentiment analysis, using the BERT-LSTNet-Softmax model to extract textual features in reviews and perform temporal predictions of consumer sentiment and purchase intention. Experimental results show that this model achieves excellent performance in the e-commerce field and provides a powerful tool for in-depth understanding of consumer purchasing decisions. This research promotes the application of deep learning technology in the field of e-commerce, helps to improve the accuracy of consumer purchase intentions, and provides more support for the development of the e-commerce market and consumer decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Organizational and End User Computing
Journal of Organizational and End User Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.00
自引率
9.20%
发文量
77
期刊介绍: The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信