通过退火温度调节尖晶钴铁氧体 (CoFe2O4) 纳米粒子的微结构属性

Manish Naagar, Sonia Chalia, P. Thakur, A. Thakur
{"title":"通过退火温度调节尖晶钴铁氧体 (CoFe2O4) 纳米粒子的微结构属性","authors":"Manish Naagar, Sonia Chalia, P. Thakur, A. Thakur","doi":"10.2174/0126661454267476231214053431","DOIUrl":null,"url":null,"abstract":"The study systematically investigates the influence of annealing temperatures, ranging from 500°C to 900°C with 100°C increments, on the microstructural characteristics of cobalt ferrite (CoFe2O4) nanoparticles. The nanoparticles, with sizes between 7-18 nm, were synthesized using the co-precipitation method. X-ray diffraction (XRD) analysis reveals that higher annealing temperatures correspond to noticeable increases in crystallite size, lattice parameter, unit cell volume, and interatomic distances within both octahedral and tetrahedral sites. Concurrently, a substantial decrease is observed in the average theoretical X-ray density, dislocation density, and microstructural strain. This investigation elucidates the underlying physical and chemical processes driving these transformations. To explore and quantify the intricate relationships between annealing temperature and various microstructural attributes of CoFe2O4 nanoparticles, Pearson’s correlation coefficient (r) serves as a robust statistical tool. The study establishes significant associations and elucidates the strength and direction of these correlations. Regression analysis yields highly robust correlations (Adjusted R-Squared > 0.99) between microstructural features and annealing temperature. These correlations provide valuable predictive insights into microstructural characteristics, offering substantial support for optimizing CoFe2O4 nanoparticle applications across a temperature range spanning from 500°C to 900°C. This research contributes to the scientific understanding of materials engineering and offers practical guidance for applications requiring precise control over nanoparticle properties.","PeriodicalId":36699,"journal":{"name":"Current Materials Science","volume":"77 s331","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Microstructural Attributes of Spinel Cobalt Ferrite (CoFe2O4) Nanoparticles through Annealing Temperature\",\"authors\":\"Manish Naagar, Sonia Chalia, P. Thakur, A. Thakur\",\"doi\":\"10.2174/0126661454267476231214053431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study systematically investigates the influence of annealing temperatures, ranging from 500°C to 900°C with 100°C increments, on the microstructural characteristics of cobalt ferrite (CoFe2O4) nanoparticles. The nanoparticles, with sizes between 7-18 nm, were synthesized using the co-precipitation method. X-ray diffraction (XRD) analysis reveals that higher annealing temperatures correspond to noticeable increases in crystallite size, lattice parameter, unit cell volume, and interatomic distances within both octahedral and tetrahedral sites. Concurrently, a substantial decrease is observed in the average theoretical X-ray density, dislocation density, and microstructural strain. This investigation elucidates the underlying physical and chemical processes driving these transformations. To explore and quantify the intricate relationships between annealing temperature and various microstructural attributes of CoFe2O4 nanoparticles, Pearson’s correlation coefficient (r) serves as a robust statistical tool. The study establishes significant associations and elucidates the strength and direction of these correlations. Regression analysis yields highly robust correlations (Adjusted R-Squared > 0.99) between microstructural features and annealing temperature. These correlations provide valuable predictive insights into microstructural characteristics, offering substantial support for optimizing CoFe2O4 nanoparticle applications across a temperature range spanning from 500°C to 900°C. This research contributes to the scientific understanding of materials engineering and offers practical guidance for applications requiring precise control over nanoparticle properties.\",\"PeriodicalId\":36699,\"journal\":{\"name\":\"Current Materials Science\",\"volume\":\"77 s331\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0126661454267476231214053431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126661454267476231214053431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地探讨了退火温度对钴铁氧体(CoFe2O4)纳米粒子微观结构特征的影响,退火温度从 500°C 到 900°C,以 100°C 为增量。 这些纳米粒子采用共沉淀法合成,尺寸在 7-18 纳米之间。X 射线衍射(XRD)分析表明,退火温度越高,晶体尺寸、晶格参数、单胞体积以及八面体和四面体位点内的原子间距离都会明显增加。与此同时,平均理论 X 射线密度、位错密度和微结构应变也大幅降低。这项研究阐明了驱动这些转变的基本物理和化学过程。为了探索和量化退火温度与 CoFe2O4 纳米粒子各种微观结构属性之间错综复杂的关系,皮尔逊相关系数 (r) 成为一种可靠的统计工具。研究确定了重要的关联,并阐明了这些关联的强度和方向。 回归分析得出了微观结构特征与退火温度之间高度稳健的相关性(调整 R 平方 > 0.99)。这些相关性为微观结构特征提供了宝贵的预测见解,为优化 CoFe2O4 纳米粒子在 500°C 至 900°C 温度范围内的应用提供了有力支持。 这项研究有助于对材料工程的科学理解,并为需要精确控制纳米粒子特性的应用提供了实际指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning Microstructural Attributes of Spinel Cobalt Ferrite (CoFe2O4) Nanoparticles through Annealing Temperature
The study systematically investigates the influence of annealing temperatures, ranging from 500°C to 900°C with 100°C increments, on the microstructural characteristics of cobalt ferrite (CoFe2O4) nanoparticles. The nanoparticles, with sizes between 7-18 nm, were synthesized using the co-precipitation method. X-ray diffraction (XRD) analysis reveals that higher annealing temperatures correspond to noticeable increases in crystallite size, lattice parameter, unit cell volume, and interatomic distances within both octahedral and tetrahedral sites. Concurrently, a substantial decrease is observed in the average theoretical X-ray density, dislocation density, and microstructural strain. This investigation elucidates the underlying physical and chemical processes driving these transformations. To explore and quantify the intricate relationships between annealing temperature and various microstructural attributes of CoFe2O4 nanoparticles, Pearson’s correlation coefficient (r) serves as a robust statistical tool. The study establishes significant associations and elucidates the strength and direction of these correlations. Regression analysis yields highly robust correlations (Adjusted R-Squared > 0.99) between microstructural features and annealing temperature. These correlations provide valuable predictive insights into microstructural characteristics, offering substantial support for optimizing CoFe2O4 nanoparticle applications across a temperature range spanning from 500°C to 900°C. This research contributes to the scientific understanding of materials engineering and offers practical guidance for applications requiring precise control over nanoparticle properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Materials Science
Current Materials Science Materials Science-Materials Science (all)
CiteScore
0.80
自引率
0.00%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信