Xin Chen, J. E. Hurley, Snigdharaj K. Mishra, J. Stone, Ming-Jun Li
{"title":"具有高模态带宽的标准单模光纤与 1060 nm 波长附近的双模光纤一样适用于高数据速率传输","authors":"Xin Chen, J. E. Hurley, Snigdharaj K. Mishra, J. Stone, Ming-Jun Li","doi":"10.3390/photonics11010035","DOIUrl":null,"url":null,"abstract":"A step-index standard single-mode fiber as a two-mode fiber at 1060 nm can have a high modal bandwidth. In the current work, we conducted a detailed study and found that the LP11 mode of such a fiber is bending-sensitive and that the light excited to LP11 mode can be stripped out due to bending. The transmission experiments were conducted using offset launch with both LP01 and LP11 modes excited and center launch with only LP01 mode excited to show transmission performance in different conditions. We demonstrated the feasibility of 25 Gb/s NRZ transmission over 1 km of the fiber when both LP01 and LP11 modes were excited. We further explored the feasibility of a trench-assisted bending-insensitive step-index standard single-mode fiber with good bending properties for both LP01 and LP11 modes for two-mode transmission at 1060 nm. We found a fiber that has high modal bandwidth at 1060 nm and can sustain bending down to at least a 20 mm diameter. The high-bandwidth two-mode fiber can be potentially useful for future 1060 nm-based VCSEL transmission.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"222 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standard Single-Mode Fiber with High Modal Bandwidth as Two-Mode Fiber around 1060 nm for High Data Rate Transmission\",\"authors\":\"Xin Chen, J. E. Hurley, Snigdharaj K. Mishra, J. Stone, Ming-Jun Li\",\"doi\":\"10.3390/photonics11010035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A step-index standard single-mode fiber as a two-mode fiber at 1060 nm can have a high modal bandwidth. In the current work, we conducted a detailed study and found that the LP11 mode of such a fiber is bending-sensitive and that the light excited to LP11 mode can be stripped out due to bending. The transmission experiments were conducted using offset launch with both LP01 and LP11 modes excited and center launch with only LP01 mode excited to show transmission performance in different conditions. We demonstrated the feasibility of 25 Gb/s NRZ transmission over 1 km of the fiber when both LP01 and LP11 modes were excited. We further explored the feasibility of a trench-assisted bending-insensitive step-index standard single-mode fiber with good bending properties for both LP01 and LP11 modes for two-mode transmission at 1060 nm. We found a fiber that has high modal bandwidth at 1060 nm and can sustain bending down to at least a 20 mm diameter. The high-bandwidth two-mode fiber can be potentially useful for future 1060 nm-based VCSEL transmission.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"222 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010035\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010035","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Standard Single-Mode Fiber with High Modal Bandwidth as Two-Mode Fiber around 1060 nm for High Data Rate Transmission
A step-index standard single-mode fiber as a two-mode fiber at 1060 nm can have a high modal bandwidth. In the current work, we conducted a detailed study and found that the LP11 mode of such a fiber is bending-sensitive and that the light excited to LP11 mode can be stripped out due to bending. The transmission experiments were conducted using offset launch with both LP01 and LP11 modes excited and center launch with only LP01 mode excited to show transmission performance in different conditions. We demonstrated the feasibility of 25 Gb/s NRZ transmission over 1 km of the fiber when both LP01 and LP11 modes were excited. We further explored the feasibility of a trench-assisted bending-insensitive step-index standard single-mode fiber with good bending properties for both LP01 and LP11 modes for two-mode transmission at 1060 nm. We found a fiber that has high modal bandwidth at 1060 nm and can sustain bending down to at least a 20 mm diameter. The high-bandwidth two-mode fiber can be potentially useful for future 1060 nm-based VCSEL transmission.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.