一个二阶混合双曲方程的带位移的边界值问题

IF 0.7 Q2 MATHEMATICS
Zh.A. Balkizov
{"title":"一个二阶混合双曲方程的带位移的边界值问题","authors":"Zh.A. Balkizov","doi":"10.31489/2023m4/41-55","DOIUrl":null,"url":null,"abstract":"The paper studies two nonlocal problems with a displacement for the conjugation of two equations of second-order hyperbolic type, with a wave equation in one part of the domain and a degenerate hyperbolic equation of the first kind in the other part. As a non-local boundary condition in the considered problems, a linear system of FDEs is specified with variable coefficients involving the first-order derivative and derivatives of fractional (in the sense of Riemann-Liouville) orders of the desired function on one of the characteristics and on the line of type changing. Using the integral equation method, the first problem is equivalently reduced to a question of the solvability for the Volterra integral equation of the second kind with a weak singularity; and a question of the solvability for the second problem is equivalently reduced to a question of the solvability for the Fredholm integral equation of the second kind with a weak singularity. For the first problem, we prove the uniform convergence of the resolvent kernel for the resulting Volterra integral equation of the second kind and we prove that its solution belongs to the required class. As to the second problem, sufficient conditions are found for the given functions that ensure the existence of a unique solution to the Fredholm integral equation of the second kind with a weak singularity of the required class. In some particular cases, the solutions are written out explicitly.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" 107","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problems with displacement for one mixed hyperbolic equation of the second order\",\"authors\":\"Zh.A. Balkizov\",\"doi\":\"10.31489/2023m4/41-55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies two nonlocal problems with a displacement for the conjugation of two equations of second-order hyperbolic type, with a wave equation in one part of the domain and a degenerate hyperbolic equation of the first kind in the other part. As a non-local boundary condition in the considered problems, a linear system of FDEs is specified with variable coefficients involving the first-order derivative and derivatives of fractional (in the sense of Riemann-Liouville) orders of the desired function on one of the characteristics and on the line of type changing. Using the integral equation method, the first problem is equivalently reduced to a question of the solvability for the Volterra integral equation of the second kind with a weak singularity; and a question of the solvability for the second problem is equivalently reduced to a question of the solvability for the Fredholm integral equation of the second kind with a weak singularity. For the first problem, we prove the uniform convergence of the resolvent kernel for the resulting Volterra integral equation of the second kind and we prove that its solution belongs to the required class. As to the second problem, sufficient conditions are found for the given functions that ensure the existence of a unique solution to the Fredholm integral equation of the second kind with a weak singularity of the required class. In some particular cases, the solutions are written out explicitly.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" 107\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023m4/41-55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m4/41-55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了两个二阶双曲型方程共轭位移的非局部问题,其中域的一部分是波方程,另一部分是第一类退化双曲方程。作为所考虑问题的非局部边界条件,指定了一个线性 FDEs 系统,其可变系数涉及所需的函数在特征之一和类型变化线上的一阶导数和分数(黎曼-刘维尔意义上的)阶导数。利用积分方程方法,第一个问题等价地简化为具有弱奇点的 Volterra 第二类积分方程的可解性问题;第二个问题的可解性问题等价地简化为具有弱奇点的 Fredholm 第二类积分方程的可解性问题。对于第一个问题,我们证明了所得到的 Volterra 第二类积分方程的解析核的均匀收敛性,并证明了其解属于所需的类别。至于第二个问题,我们为给定函数找到了充分条件,确保具有所需类别弱奇点的第二类弗雷德霍姆积分方程存在唯一解。在某些特殊情况下,可以明确写出解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary value problems with displacement for one mixed hyperbolic equation of the second order
The paper studies two nonlocal problems with a displacement for the conjugation of two equations of second-order hyperbolic type, with a wave equation in one part of the domain and a degenerate hyperbolic equation of the first kind in the other part. As a non-local boundary condition in the considered problems, a linear system of FDEs is specified with variable coefficients involving the first-order derivative and derivatives of fractional (in the sense of Riemann-Liouville) orders of the desired function on one of the characteristics and on the line of type changing. Using the integral equation method, the first problem is equivalently reduced to a question of the solvability for the Volterra integral equation of the second kind with a weak singularity; and a question of the solvability for the second problem is equivalently reduced to a question of the solvability for the Fredholm integral equation of the second kind with a weak singularity. For the first problem, we prove the uniform convergence of the resolvent kernel for the resulting Volterra integral equation of the second kind and we prove that its solution belongs to the required class. As to the second problem, sufficient conditions are found for the given functions that ensure the existence of a unique solution to the Fredholm integral equation of the second kind with a weak singularity of the required class. In some particular cases, the solutions are written out explicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信