C. Zeng, Grant R. Hecht, Souma Chowdhury, E. M. Botta
{"title":"为可靠捕获太空碎片同时优化系网系统和行动的设计","authors":"C. Zeng, Grant R. Hecht, Souma Chowdhury, E. M. Botta","doi":"10.2514/1.a35812","DOIUrl":null,"url":null,"abstract":"Tether-nets deployed from a chaser spacecraft are a promising solution to capturing space debris. The success of the one-shot capture process depends on the net’s structural dynamic properties, attributed to its physical design, and on the ability to perform an optimal launch and closure subject to sensing and actuation uncertainties. Hence, this paper presents a reliability-based optimization framework to simultaneously optimize the net design and its launch and closing actions to minimize the system mass (case 1) or closing time (case 2) while preserving a specified probability of capture success. Success is assessed in terms of a capture quality index and the number of locked node pairs. Gaussian noise is used to model the uncertainties in the dynamics, state estimation, and actuation of the tether-net, which is propagated via Monte Carlo sampling. To account for uncertainties and ensure computational efficiency, given the cost of simulating the tether-net dynamics, Bayesian optimization is used to solve this problem. Optimization results show that the mission success rate in the presence of uncertainties has increased from 75% to over 98%, while the capture completion time has almost halved.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" 21","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concurrent Design Optimization of Tether-Net System and Actions for Reliable Space-Debris Capture\",\"authors\":\"C. Zeng, Grant R. Hecht, Souma Chowdhury, E. M. Botta\",\"doi\":\"10.2514/1.a35812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tether-nets deployed from a chaser spacecraft are a promising solution to capturing space debris. The success of the one-shot capture process depends on the net’s structural dynamic properties, attributed to its physical design, and on the ability to perform an optimal launch and closure subject to sensing and actuation uncertainties. Hence, this paper presents a reliability-based optimization framework to simultaneously optimize the net design and its launch and closing actions to minimize the system mass (case 1) or closing time (case 2) while preserving a specified probability of capture success. Success is assessed in terms of a capture quality index and the number of locked node pairs. Gaussian noise is used to model the uncertainties in the dynamics, state estimation, and actuation of the tether-net, which is propagated via Monte Carlo sampling. To account for uncertainties and ensure computational efficiency, given the cost of simulating the tether-net dynamics, Bayesian optimization is used to solve this problem. Optimization results show that the mission success rate in the presence of uncertainties has increased from 75% to over 98%, while the capture completion time has almost halved.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\" 21\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35812\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35812","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Concurrent Design Optimization of Tether-Net System and Actions for Reliable Space-Debris Capture
Tether-nets deployed from a chaser spacecraft are a promising solution to capturing space debris. The success of the one-shot capture process depends on the net’s structural dynamic properties, attributed to its physical design, and on the ability to perform an optimal launch and closure subject to sensing and actuation uncertainties. Hence, this paper presents a reliability-based optimization framework to simultaneously optimize the net design and its launch and closing actions to minimize the system mass (case 1) or closing time (case 2) while preserving a specified probability of capture success. Success is assessed in terms of a capture quality index and the number of locked node pairs. Gaussian noise is used to model the uncertainties in the dynamics, state estimation, and actuation of the tether-net, which is propagated via Monte Carlo sampling. To account for uncertainties and ensure computational efficiency, given the cost of simulating the tether-net dynamics, Bayesian optimization is used to solve this problem. Optimization results show that the mission success rate in the presence of uncertainties has increased from 75% to over 98%, while the capture completion time has almost halved.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.