Yi Xing, Xiaoyu Sun, Wentian Chen, Xiaoqing Ma, Zirui Huang, Minglian Li, Wenfeng Guo, Yuqian Fan
{"title":"黑色-Fe2O3 多面体组装三维薄膜电极具有更强的导电性和能量密度,可用于水体固态储能","authors":"Yi Xing, Xiaoyu Sun, Wentian Chen, Xiaoqing Ma, Zirui Huang, Minglian Li, Wenfeng Guo, Yuqian Fan","doi":"10.1115/1.4064380","DOIUrl":null,"url":null,"abstract":"The construction of advanced Fe2O3 materials with high energy density for energy storage faces challenges due to the defects of conventional widely-known red-brown Fe2O3 such as poor electronic conductivity and insufficient physical/chemical stability. Unlike previous work, we successfully synthesize a novel black Fe2O3 (B-Fe2O3) thin film electrode by adopting simple hydrothermal strategy. Physical characterizations indicate that the as-made B-Fe2O3 product is composed of polyhedrons (mainly exhibit 4-8 sides) with a micrometer grade size range. Besides, the Fe-based thin film electrode with this 3D structure has stronger affinity and high electronic conductivity. As anode of aqueous solid-state energy storage devices, the as-synthesized B-Fe2O3 film electrode exhibits excellent volume energy density of 14.349 kWh m−3 at power density of 1609 kW m−3, which is much higher than the best result of previous works (∼8 kWh m−3). This study may provide new insights into the development of the Fe2O3 series on developing high-efficiency Fe-based anode materials for solid-state energy storage.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" 21","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black-Fe2O3 Polyhedron-Assembled 3D Film Electrode with Enhanced Conductivity and Energy Density for Aqueous Solid-State Energy Storage\",\"authors\":\"Yi Xing, Xiaoyu Sun, Wentian Chen, Xiaoqing Ma, Zirui Huang, Minglian Li, Wenfeng Guo, Yuqian Fan\",\"doi\":\"10.1115/1.4064380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of advanced Fe2O3 materials with high energy density for energy storage faces challenges due to the defects of conventional widely-known red-brown Fe2O3 such as poor electronic conductivity and insufficient physical/chemical stability. Unlike previous work, we successfully synthesize a novel black Fe2O3 (B-Fe2O3) thin film electrode by adopting simple hydrothermal strategy. Physical characterizations indicate that the as-made B-Fe2O3 product is composed of polyhedrons (mainly exhibit 4-8 sides) with a micrometer grade size range. Besides, the Fe-based thin film electrode with this 3D structure has stronger affinity and high electronic conductivity. As anode of aqueous solid-state energy storage devices, the as-synthesized B-Fe2O3 film electrode exhibits excellent volume energy density of 14.349 kWh m−3 at power density of 1609 kW m−3, which is much higher than the best result of previous works (∼8 kWh m−3). This study may provide new insights into the development of the Fe2O3 series on developing high-efficiency Fe-based anode materials for solid-state energy storage.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":\" 21\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064380\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064380","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Black-Fe2O3 Polyhedron-Assembled 3D Film Electrode with Enhanced Conductivity and Energy Density for Aqueous Solid-State Energy Storage
The construction of advanced Fe2O3 materials with high energy density for energy storage faces challenges due to the defects of conventional widely-known red-brown Fe2O3 such as poor electronic conductivity and insufficient physical/chemical stability. Unlike previous work, we successfully synthesize a novel black Fe2O3 (B-Fe2O3) thin film electrode by adopting simple hydrothermal strategy. Physical characterizations indicate that the as-made B-Fe2O3 product is composed of polyhedrons (mainly exhibit 4-8 sides) with a micrometer grade size range. Besides, the Fe-based thin film electrode with this 3D structure has stronger affinity and high electronic conductivity. As anode of aqueous solid-state energy storage devices, the as-synthesized B-Fe2O3 film electrode exhibits excellent volume energy density of 14.349 kWh m−3 at power density of 1609 kW m−3, which is much higher than the best result of previous works (∼8 kWh m−3). This study may provide new insights into the development of the Fe2O3 series on developing high-efficiency Fe-based anode materials for solid-state energy storage.
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.