基于交叉检查的商标图像检索用于热门公司检测

IF 3.6 3区 管理学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hao Wu, Zhiyi Zhang, Zhilin Zhu
{"title":"基于交叉检查的商标图像检索用于热门公司检测","authors":"Hao Wu, Zhiyi Zhang, Zhilin Zhu","doi":"10.4018/joeuc.335455","DOIUrl":null,"url":null,"abstract":"A trademark is an essential symbol of a company, consisting of a semantically rich image under ordinary circumstances. The popularity of a company can be measured by the frequency of its trademark being used. Therefore, efficiently retrieving trademark images would directly contribute to the detection of popular companies. However, most mainstream retrieval methods are not especially pertinent to trademark image retrieval. To solve this problem, a combination of the ResNet50 network and Autoencoder with local sensitive hashing (LSH) is used to conduct full cross-checking, which significantly improves the effectiveness of trademark image retrieval. Meanwhile, image super-resolution-based sparse coding is also proposed to achieve high-precision trademark image retrieval and its effect is particularly significant for challenging trademark images. Finally, the authors conduct extensive experiments on a high-quality database to demonstrate the substantial effectiveness of the proposed methods.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":" 17","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Checking-Based Trademark Image Retrieval for Hot Company Detection\",\"authors\":\"Hao Wu, Zhiyi Zhang, Zhilin Zhu\",\"doi\":\"10.4018/joeuc.335455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A trademark is an essential symbol of a company, consisting of a semantically rich image under ordinary circumstances. The popularity of a company can be measured by the frequency of its trademark being used. Therefore, efficiently retrieving trademark images would directly contribute to the detection of popular companies. However, most mainstream retrieval methods are not especially pertinent to trademark image retrieval. To solve this problem, a combination of the ResNet50 network and Autoencoder with local sensitive hashing (LSH) is used to conduct full cross-checking, which significantly improves the effectiveness of trademark image retrieval. Meanwhile, image super-resolution-based sparse coding is also proposed to achieve high-precision trademark image retrieval and its effect is particularly significant for challenging trademark images. Finally, the authors conduct extensive experiments on a high-quality database to demonstrate the substantial effectiveness of the proposed methods.\",\"PeriodicalId\":49029,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\" 17\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.335455\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.335455","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

商标是一个公司的基本标志,在一般情况下由一个语义丰富的形象组成。一家公司的知名度可以通过其商标被使用的频率来衡量。因此,有效检索商标图像将直接有助于发现受欢迎的公司。然而,大多数主流检索方法并不特别适合商标图像检索。为了解决这一问题,我们采用了 ResNet50 网络和带有局部敏感哈希(LSH)的自动编码器相结合的方法来进行全面交叉检查,从而显著提高了商标图像检索的有效性。同时,还提出了基于图像超分辨率的稀疏编码来实现高精度商标图像检索,其效果对于具有挑战性的商标图像尤为显著。最后,作者在高质量数据库上进行了大量实验,证明了所提方法的显著效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Checking-Based Trademark Image Retrieval for Hot Company Detection
A trademark is an essential symbol of a company, consisting of a semantically rich image under ordinary circumstances. The popularity of a company can be measured by the frequency of its trademark being used. Therefore, efficiently retrieving trademark images would directly contribute to the detection of popular companies. However, most mainstream retrieval methods are not especially pertinent to trademark image retrieval. To solve this problem, a combination of the ResNet50 network and Autoencoder with local sensitive hashing (LSH) is used to conduct full cross-checking, which significantly improves the effectiveness of trademark image retrieval. Meanwhile, image super-resolution-based sparse coding is also proposed to achieve high-precision trademark image retrieval and its effect is particularly significant for challenging trademark images. Finally, the authors conduct extensive experiments on a high-quality database to demonstrate the substantial effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Organizational and End User Computing
Journal of Organizational and End User Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.00
自引率
9.20%
发文量
77
期刊介绍: The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信