一类带参数非线性奇异微分方程的多重性结果

Shaowen Li
{"title":"一类带参数非线性奇异微分方程的多重性结果","authors":"Shaowen Li","doi":"10.30538/psrp-oma2023.0130","DOIUrl":null,"url":null,"abstract":"This paper gives sufficient conditions for the existence of positive periodic solutions to general indefinite singular differential equations. Furthermore, under some assumptions we show the existence of two positive periodic solutions. The methods used are Krasnoselski\\(\\breve{\\mbox{i}}\\)'s-Guo fixed point theorem and the positivity of the associated Green's function.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity results for a class of nonlinear singular differential equation with a parameter\",\"authors\":\"Shaowen Li\",\"doi\":\"10.30538/psrp-oma2023.0130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives sufficient conditions for the existence of positive periodic solutions to general indefinite singular differential equations. Furthermore, under some assumptions we show the existence of two positive periodic solutions. The methods used are Krasnoselski\\\\(\\\\breve{\\\\mbox{i}}\\\\)'s-Guo fixed point theorem and the positivity of the associated Green's function.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2023.0130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2023.0130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一般不定奇异微分方程存在正周期解的充分条件。此外,在一些假设条件下,我们证明了两个正周期解的存在。所使用的方法是 Krasnoselski (\breve\mbox{i}}\)的郭定点定理和相关格林函数的正定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity results for a class of nonlinear singular differential equation with a parameter
This paper gives sufficient conditions for the existence of positive periodic solutions to general indefinite singular differential equations. Furthermore, under some assumptions we show the existence of two positive periodic solutions. The methods used are Krasnoselski\(\breve{\mbox{i}}\)'s-Guo fixed point theorem and the positivity of the associated Green's function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信