从非正式语言到标准语言规范化的印尼语自动会话系统架构

Muhammad Fathur Rahman Khairul, R. Perdana
{"title":"从非正式语言到标准语言规范化的印尼语自动会话系统架构","authors":"Muhammad Fathur Rahman Khairul, R. Perdana","doi":"10.25126/jtiik.1077984","DOIUrl":null,"url":null,"abstract":"Komunikasi merupakan hal yang paling penting dalam kehidupan sehari-hari. Setiap orang berkomunikasi dengan cara mereka berdasarkan latar belakang serta kedekatan antar pembicara. Oleh karena itu, perkembangan bahasa informal terjadi sangat cepat dan tidak jarang menciptakan kata-kata baru sebagai pengganti bahasa formal. Hal ini menjadi masalah jika dilihat dari perspektif pemrosesan bahasa alami (NLP). NLP umumnya hanya dapat dilakukan dengan bahasa yang formal dan tidak mampu menginterpretasikan makna dari kalimat informal. Maka dari itu, penulis mengusulkan pendekatan untuk memungkinkan mesin memahami bahasa informal dengan melakukan normalisasi bahasa infomal menjadi baku dengan memanfaatkan NLP. Pendekatan yang dilakukan akan melatih model pre-trained GPT-2 berbahasa Indonesia dengan data parallel corpus untuk memahami makna dari bahasa informal dan mampu menerjemahkannya ke dalam bentuk baku. Melalui eksperimen yang dilakukan, pendekatan ini mencapai tingkat akurasi 91% dan dapat menerjemahkan bahasa informal dengan baik. Performa ini dapat diraih dengan konfigurasi hiperparameter yaitu Adam optimizer dengan learning rate 1e-4, batch size sebesar 16 dan dropout rate sebesar 0,5.   Abstract   Communication is the most essential thing in daily life. Everyone communicates in their own way based on their background and the closeness between speakers. Thus, the development of informal language occurs quickly and it is often to create new words as a substitute for formal language. This is an issue from a natural language processing (NLP) perspective. NLP generally only works with formal language and is unable to interpret the meaning of informal sentences. Therefore, the authors propose an approach to enable machines to understand informal language by normalizing the informal language to standard by utilizing NLP. The approach will train a pre-trained GPT-2 model in Indonesian with parallel corpus data to understand the meaning of informal language and be able to translate it into standardized form. Through experiments, the method achieved 91% accuracy and can translate informal language well. This performance can be achieved with a hyperparameter configuration, namely Adam optimizer with a learning rate of 1e-4, batch size of 16 and dropout rate of 0.5.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsitektur Sistem Percakapan Otomatis Berbahasa Indonesia dengan Normalisasi Bahasa Informal Menjadi Baku\",\"authors\":\"Muhammad Fathur Rahman Khairul, R. Perdana\",\"doi\":\"10.25126/jtiik.1077984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Komunikasi merupakan hal yang paling penting dalam kehidupan sehari-hari. Setiap orang berkomunikasi dengan cara mereka berdasarkan latar belakang serta kedekatan antar pembicara. Oleh karena itu, perkembangan bahasa informal terjadi sangat cepat dan tidak jarang menciptakan kata-kata baru sebagai pengganti bahasa formal. Hal ini menjadi masalah jika dilihat dari perspektif pemrosesan bahasa alami (NLP). NLP umumnya hanya dapat dilakukan dengan bahasa yang formal dan tidak mampu menginterpretasikan makna dari kalimat informal. Maka dari itu, penulis mengusulkan pendekatan untuk memungkinkan mesin memahami bahasa informal dengan melakukan normalisasi bahasa infomal menjadi baku dengan memanfaatkan NLP. Pendekatan yang dilakukan akan melatih model pre-trained GPT-2 berbahasa Indonesia dengan data parallel corpus untuk memahami makna dari bahasa informal dan mampu menerjemahkannya ke dalam bentuk baku. Melalui eksperimen yang dilakukan, pendekatan ini mencapai tingkat akurasi 91% dan dapat menerjemahkan bahasa informal dengan baik. Performa ini dapat diraih dengan konfigurasi hiperparameter yaitu Adam optimizer dengan learning rate 1e-4, batch size sebesar 16 dan dropout rate sebesar 0,5.   Abstract   Communication is the most essential thing in daily life. Everyone communicates in their own way based on their background and the closeness between speakers. Thus, the development of informal language occurs quickly and it is often to create new words as a substitute for formal language. This is an issue from a natural language processing (NLP) perspective. NLP generally only works with formal language and is unable to interpret the meaning of informal sentences. Therefore, the authors propose an approach to enable machines to understand informal language by normalizing the informal language to standard by utilizing NLP. The approach will train a pre-trained GPT-2 model in Indonesian with parallel corpus data to understand the meaning of informal language and be able to translate it into standardized form. Through experiments, the method achieved 91% accuracy and can translate informal language well. This performance can be achieved with a hyperparameter configuration, namely Adam optimizer with a learning rate of 1e-4, batch size of 16 and dropout rate of 0.5.\",\"PeriodicalId\":32501,\"journal\":{\"name\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25126/jtiik.1077984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.1077984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

沟通是日常生活中最重要的事情。每个人都会根据自己的背景和说话者之间的亲密程度用自己的方式进行交流。因此,非正式语言的发展非常迅速,创造新词来替代正式语言的情况并不少见。从自然语言处理(NLP)的角度来看,这是一个问题。NLP 通常只处理正式语言,无法解释非正式句子的含义。因此,作者提出了一种方法,通过使用 NLP 将非正式语言规范化为标准化语言,使机器能够理解非正式语言。该方法将利用平行语料库数据训练预先训练好的印尼语 GPT-2 模型,以理解非正式语言的含义,并能将其翻译成标准化形式。通过实验,该方法的准确率达到 91%,能够很好地翻译非正式语言。在学习率为 1e-4、批量大小为 16、辍学率为 0.5 的亚当优化器的超参数配置下,可以达到这一性能。 摘要 沟通是日常生活中最重要的事情。每个人都会根据自己的背景和说话者之间的亲疏程度用自己的方式进行交流。因此,非正式语言的发展很快,而且经常创造新词来替代正式语言。从自然语言处理(NLP)的角度来看,这是一个问题。NLP 一般只处理正式语言,无法解释非正式句子的含义。因此,作者提出了一种方法,利用 NLP 将非正式语言规范化,使机器能够理解非正式语言。该方法将利用平行语料库数据训练一个预先训练好的印尼语 GPT-2 模型,以理解非正式语言的含义,并能将其翻译成标准化形式。通过实验,该方法的准确率达到 91%,能够很好地翻译非正式语言。通过超参数配置,即学习率为 1e-4、批量大小为 16、辍学率为 0.5 的亚当优化器,可以实现这一性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arsitektur Sistem Percakapan Otomatis Berbahasa Indonesia dengan Normalisasi Bahasa Informal Menjadi Baku
Komunikasi merupakan hal yang paling penting dalam kehidupan sehari-hari. Setiap orang berkomunikasi dengan cara mereka berdasarkan latar belakang serta kedekatan antar pembicara. Oleh karena itu, perkembangan bahasa informal terjadi sangat cepat dan tidak jarang menciptakan kata-kata baru sebagai pengganti bahasa formal. Hal ini menjadi masalah jika dilihat dari perspektif pemrosesan bahasa alami (NLP). NLP umumnya hanya dapat dilakukan dengan bahasa yang formal dan tidak mampu menginterpretasikan makna dari kalimat informal. Maka dari itu, penulis mengusulkan pendekatan untuk memungkinkan mesin memahami bahasa informal dengan melakukan normalisasi bahasa infomal menjadi baku dengan memanfaatkan NLP. Pendekatan yang dilakukan akan melatih model pre-trained GPT-2 berbahasa Indonesia dengan data parallel corpus untuk memahami makna dari bahasa informal dan mampu menerjemahkannya ke dalam bentuk baku. Melalui eksperimen yang dilakukan, pendekatan ini mencapai tingkat akurasi 91% dan dapat menerjemahkan bahasa informal dengan baik. Performa ini dapat diraih dengan konfigurasi hiperparameter yaitu Adam optimizer dengan learning rate 1e-4, batch size sebesar 16 dan dropout rate sebesar 0,5.   Abstract   Communication is the most essential thing in daily life. Everyone communicates in their own way based on their background and the closeness between speakers. Thus, the development of informal language occurs quickly and it is often to create new words as a substitute for formal language. This is an issue from a natural language processing (NLP) perspective. NLP generally only works with formal language and is unable to interpret the meaning of informal sentences. Therefore, the authors propose an approach to enable machines to understand informal language by normalizing the informal language to standard by utilizing NLP. The approach will train a pre-trained GPT-2 model in Indonesian with parallel corpus data to understand the meaning of informal language and be able to translate it into standardized form. Through experiments, the method achieved 91% accuracy and can translate informal language well. This performance can be achieved with a hyperparameter configuration, namely Adam optimizer with a learning rate of 1e-4, batch size of 16 and dropout rate of 0.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信