求解带有分数阻尼的波方程的有限差分法

Manruo Cui, Cui-Cui Ji, Weizhong Dai
{"title":"求解带有分数阻尼的波方程的有限差分法","authors":"Manruo Cui, Cui-Cui Ji, Weizhong Dai","doi":"10.3390/mca29010002","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a finite difference method for solving the wave equation with fractional damping in 1D and 2D cases, where the fractional damping is given based on the Caputo fractional derivative. Firstly, based on the weighted method, we propose a new numerical approximation for the Caputo fractional derivative and apply it for the 1D case to obtain a time-stepping method. We then develop an alternating direction implicit (ADI) scheme for the 2D case. Using the discrete energy method, we prove that the proposed difference schemes are unconditionally stable and convergent in both 1D and 2D cases. Finally, several numerical examples are given to verify the theoretical results.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":" 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Finite Difference Method for Solving the Wave Equation with Fractional Damping\",\"authors\":\"Manruo Cui, Cui-Cui Ji, Weizhong Dai\",\"doi\":\"10.3390/mca29010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a finite difference method for solving the wave equation with fractional damping in 1D and 2D cases, where the fractional damping is given based on the Caputo fractional derivative. Firstly, based on the weighted method, we propose a new numerical approximation for the Caputo fractional derivative and apply it for the 1D case to obtain a time-stepping method. We then develop an alternating direction implicit (ADI) scheme for the 2D case. Using the discrete energy method, we prove that the proposed difference schemes are unconditionally stable and convergent in both 1D and 2D cases. Finally, several numerical examples are given to verify the theoretical results.\",\"PeriodicalId\":352525,\"journal\":{\"name\":\"Mathematical and Computational Applications\",\"volume\":\" 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca29010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca29010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一种有限差分方法,用于求解一维和二维情况下带有分数阻尼的波方程,其中分数阻尼是基于 Caputo 分数导数给出的。首先,在加权法的基础上,我们提出了一种新的 Caputo 分数导数数值近似值,并将其应用于一维情况,从而得到一种时间步进方法。然后,我们为二维情况开发了交替方向隐式 (ADI) 方案。利用离散能量法,我们证明了所提出的差分方案在一维和二维情况下都是无条件稳定和收敛的。最后,我们给出了几个数值示例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Finite Difference Method for Solving the Wave Equation with Fractional Damping
In this paper, we develop a finite difference method for solving the wave equation with fractional damping in 1D and 2D cases, where the fractional damping is given based on the Caputo fractional derivative. Firstly, based on the weighted method, we propose a new numerical approximation for the Caputo fractional derivative and apply it for the 1D case to obtain a time-stepping method. We then develop an alternating direction implicit (ADI) scheme for the 2D case. Using the discrete energy method, we prove that the proposed difference schemes are unconditionally stable and convergent in both 1D and 2D cases. Finally, several numerical examples are given to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信