论带复指数的一般狄利克列数列的收敛域

IF 1 Q1 MATHEMATICS
M.R. Kuryliak, O. Skaskiv
{"title":"论带复指数的一般狄利克列数列的收敛域","authors":"M.R. Kuryliak, O. Skaskiv","doi":"10.15330/cmp.15.2.594-607","DOIUrl":null,"url":null,"abstract":"Let $(\\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\\sum\\limits_{n=0}^{+\\infty} a_ne^{z\\lambda_n}$, $z\\in\\mathbb{C}$, we denote $G_{\\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\\mu(z,F)=\\max\\big\\{|a_n|e^{\\Re(z\\lambda_n)} : n\\geq 0\\big\\}$, respectively. It is well known that $G_\\mu(F), G_a(F)$ are convex domains. Let us denote $\\mathcal{N}_1(z):=\\{n : \\Re(z\\lambda_n)>0\\}$, $\\mathcal{N}_2(z):=\\{n : \\Re(z\\lambda_n)<0\\}$ and \\[\\alpha^{(1)}(\\theta) :=\\varliminf\\limits_{\\genfrac{}{}{0pt}{2}{n\\to +\\infty}{n\\in\\mathcal{N}_1(e^{i\\theta})}}\\frac{-\\ln|a_n|}{\\Re(e^{i\\theta}\\lambda_n)},\\qquad \\alpha^{(2)}(\\theta) :=\\varlimsup\\limits_{\\genfrac{}{}{0pt}{2}{n\\to +\\infty}{n\\in\\mathcal{N}_2(e^{i\\theta})}}\\frac{-\\ln|a_n|}{\\Re(e^{i\\theta}\\lambda_n)}.\\] Assume that $a_n\\to 0$ as $n\\to +\\infty$. In the article, we prove the following statements. $1)$ If $\\alpha^{(2)}(\\theta)<\\alpha^{(1)}(\\theta)$ for some $\\theta\\in [0,\\pi)$ then \\[\\big\\{te^{i\\theta} : t\\in (\\alpha^{(2)}(\\theta),\\alpha^{(1)}(\\theta))\\big\\}\\subset G_\\mu(F)\\] as well as \\[\\big\\{te^{i\\theta} : t\\in (-\\infty,\\alpha^{(2)}(\\theta))\\cup (\\alpha^{(1)}(\\theta),+\\infty)\\big\\}\\cap G_\\mu(F)=\\emptyset.\\] $2)$ $G_\\mu(F)=\\bigcup\\limits_{\\theta\\in [0,\\pi)}\\{z=te^{i\\theta} : t\\in (\\alpha^{(2)}(\\theta),\\alpha^{(1)}(\\theta))\\}.$ $3)$ If $h:=\\varliminf\\limits_{n\\to +\\infty}\\frac{-\\ln |a_n|}{\\ln n}\\in (1,+\\infty)$, then \\[\\Big(\\frac{h}{h-1}\\cdot G_a(F)\\Big)\\supset G_\\mu(F)\\supset G_c(F).\\] If $h=+\\infty$ then $G_a(F)=G_c(F)=G_\\mu(F)$, therefore $G_c(F)$ is also a convex domain.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the domain of convergence of general Dirichlet series with complex exponents\",\"authors\":\"M.R. Kuryliak, O. Skaskiv\",\"doi\":\"10.15330/cmp.15.2.594-607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(\\\\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\\\\sum\\\\limits_{n=0}^{+\\\\infty} a_ne^{z\\\\lambda_n}$, $z\\\\in\\\\mathbb{C}$, we denote $G_{\\\\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\\\\mu(z,F)=\\\\max\\\\big\\\\{|a_n|e^{\\\\Re(z\\\\lambda_n)} : n\\\\geq 0\\\\big\\\\}$, respectively. It is well known that $G_\\\\mu(F), G_a(F)$ are convex domains. Let us denote $\\\\mathcal{N}_1(z):=\\\\{n : \\\\Re(z\\\\lambda_n)>0\\\\}$, $\\\\mathcal{N}_2(z):=\\\\{n : \\\\Re(z\\\\lambda_n)<0\\\\}$ and \\\\[\\\\alpha^{(1)}(\\\\theta) :=\\\\varliminf\\\\limits_{\\\\genfrac{}{}{0pt}{2}{n\\\\to +\\\\infty}{n\\\\in\\\\mathcal{N}_1(e^{i\\\\theta})}}\\\\frac{-\\\\ln|a_n|}{\\\\Re(e^{i\\\\theta}\\\\lambda_n)},\\\\qquad \\\\alpha^{(2)}(\\\\theta) :=\\\\varlimsup\\\\limits_{\\\\genfrac{}{}{0pt}{2}{n\\\\to +\\\\infty}{n\\\\in\\\\mathcal{N}_2(e^{i\\\\theta})}}\\\\frac{-\\\\ln|a_n|}{\\\\Re(e^{i\\\\theta}\\\\lambda_n)}.\\\\] Assume that $a_n\\\\to 0$ as $n\\\\to +\\\\infty$. In the article, we prove the following statements. $1)$ If $\\\\alpha^{(2)}(\\\\theta)<\\\\alpha^{(1)}(\\\\theta)$ for some $\\\\theta\\\\in [0,\\\\pi)$ then \\\\[\\\\big\\\\{te^{i\\\\theta} : t\\\\in (\\\\alpha^{(2)}(\\\\theta),\\\\alpha^{(1)}(\\\\theta))\\\\big\\\\}\\\\subset G_\\\\mu(F)\\\\] as well as \\\\[\\\\big\\\\{te^{i\\\\theta} : t\\\\in (-\\\\infty,\\\\alpha^{(2)}(\\\\theta))\\\\cup (\\\\alpha^{(1)}(\\\\theta),+\\\\infty)\\\\big\\\\}\\\\cap G_\\\\mu(F)=\\\\emptyset.\\\\] $2)$ $G_\\\\mu(F)=\\\\bigcup\\\\limits_{\\\\theta\\\\in [0,\\\\pi)}\\\\{z=te^{i\\\\theta} : t\\\\in (\\\\alpha^{(2)}(\\\\theta),\\\\alpha^{(1)}(\\\\theta))\\\\}.$ $3)$ If $h:=\\\\varliminf\\\\limits_{n\\\\to +\\\\infty}\\\\frac{-\\\\ln |a_n|}{\\\\ln n}\\\\in (1,+\\\\infty)$, then \\\\[\\\\Big(\\\\frac{h}{h-1}\\\\cdot G_a(F)\\\\Big)\\\\supset G_\\\\mu(F)\\\\supset G_c(F).\\\\] If $h=+\\\\infty$ then $G_a(F)=G_c(F)=G_\\\\mu(F)$, therefore $G_c(F)$ is also a convex domain.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.594-607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.594-607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让$(\lambda_n)$ 是一对不同复数的序列。对于形式狄利克特数列 $F(z)=\sum\limits_{n=0}^{+\infty} a_ne^{z\lambda_n}$, $z\in\mathbb{C}$, 我们表示 $G_{\mu}(F),$G_{c}(F)、$G_{a}(F)$ 是最大项 $\mu(z,F)=\max\big\{|a_n|e^{\Re(z\lambda_n)} 的存在域、收敛域和绝对收敛域 :n\geq 0\big\}$, respectively.众所周知,$G_\mu(F), G_a(F)$ 是凸域。 让我们表示 $\mathcal{N}_1(z):=\{n :\Re(z\lambda_n)>0\}$, $\mathcal{N}_2(z):=\{n :\Re(z\lambda_n)<0\}$ and \[α^{(1)}(\theta) :=\varliminf\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_1(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)},\qquad \alpha^{(2)}(\theta) :=\varlimsup\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_2(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)}.\]假设当 $n\to +\infty$ 时,$a_n\to 0$。在本文中,我们将证明以下陈述。 $1)$ If $\alpha^{(2)}(\theta)<\alpha^{(1)}(\theta)$ for some $\theta\in [0,\pi)$ then \[\big\{te^{i\theta} :t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\big\} (子集 G_\mu(F))] 以及 ([\big\{te^{i\theta} :t\in (-\infty,\alpha^{(2)}(\theta))\cup (\alpha^{(1)}(\theta),+\infty)\big\}\cap G_\mu(F)=\emptyset.\2)$ $G_\mu(F)=\bigcup\limits_{\theta\in [0,\pi)}\{z=te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\}.$ $3)$ If $h:=varliminf\limits_{n\to +\infty}\frac{-\ln |a_n|}{\ln n}\in (1,+\infty)$, then \[\Big(\frac{h}{h-1}\cdot G_a(F)\Big)\supset G_\mu(F)\supset G_c(F).\如果$h=+\infty$,那么$G_a(F)=G_c(F)=G_\mu(F)$,因此$G_c(F)$也是一个凸域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the domain of convergence of general Dirichlet series with complex exponents
Let $(\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\sum\limits_{n=0}^{+\infty} a_ne^{z\lambda_n}$, $z\in\mathbb{C}$, we denote $G_{\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\mu(z,F)=\max\big\{|a_n|e^{\Re(z\lambda_n)} : n\geq 0\big\}$, respectively. It is well known that $G_\mu(F), G_a(F)$ are convex domains. Let us denote $\mathcal{N}_1(z):=\{n : \Re(z\lambda_n)>0\}$, $\mathcal{N}_2(z):=\{n : \Re(z\lambda_n)<0\}$ and \[\alpha^{(1)}(\theta) :=\varliminf\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_1(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)},\qquad \alpha^{(2)}(\theta) :=\varlimsup\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_2(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)}.\] Assume that $a_n\to 0$ as $n\to +\infty$. In the article, we prove the following statements. $1)$ If $\alpha^{(2)}(\theta)<\alpha^{(1)}(\theta)$ for some $\theta\in [0,\pi)$ then \[\big\{te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\big\}\subset G_\mu(F)\] as well as \[\big\{te^{i\theta} : t\in (-\infty,\alpha^{(2)}(\theta))\cup (\alpha^{(1)}(\theta),+\infty)\big\}\cap G_\mu(F)=\emptyset.\] $2)$ $G_\mu(F)=\bigcup\limits_{\theta\in [0,\pi)}\{z=te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\}.$ $3)$ If $h:=\varliminf\limits_{n\to +\infty}\frac{-\ln |a_n|}{\ln n}\in (1,+\infty)$, then \[\Big(\frac{h}{h-1}\cdot G_a(F)\Big)\supset G_\mu(F)\supset G_c(F).\] If $h=+\infty$ then $G_a(F)=G_c(F)=G_\mu(F)$, therefore $G_c(F)$ is also a convex domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信