{"title":"雾计算任务调度方法和指标分析","authors":"Javid Misirli, E. Casalicchio","doi":"10.3390/fi16010016","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) uptake brought a paradigm shift in application deployment. Indeed, IoT applications are not centralized in cloud data centers, but the computation and storage are moved close to the consumers, creating a computing continuum between the edge of the network and the cloud. This paradigm shift is called fog computing, a concept introduced by Cisco in 2012. Scheduling applications in this decentralized, heterogeneous, and resource-constrained environment is challenging. The task scheduling problem in fog computing has been widely explored and addressed using many approaches, from traditional operational research to heuristics and machine learning. This paper aims to analyze the literature on task scheduling in fog computing published in the last five years to classify the criteria used for decision-making and the technique used to solve the task scheduling problem. We propose a taxonomy of task scheduling algorithms, and we identify the research gaps and challenges.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":" 46","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analysis of Methods and Metrics for Task Scheduling in Fog Computing\",\"authors\":\"Javid Misirli, E. Casalicchio\",\"doi\":\"10.3390/fi16010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) uptake brought a paradigm shift in application deployment. Indeed, IoT applications are not centralized in cloud data centers, but the computation and storage are moved close to the consumers, creating a computing continuum between the edge of the network and the cloud. This paradigm shift is called fog computing, a concept introduced by Cisco in 2012. Scheduling applications in this decentralized, heterogeneous, and resource-constrained environment is challenging. The task scheduling problem in fog computing has been widely explored and addressed using many approaches, from traditional operational research to heuristics and machine learning. This paper aims to analyze the literature on task scheduling in fog computing published in the last five years to classify the criteria used for decision-making and the technique used to solve the task scheduling problem. We propose a taxonomy of task scheduling algorithms, and we identify the research gaps and challenges.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\" 46\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16010016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An Analysis of Methods and Metrics for Task Scheduling in Fog Computing
The Internet of Things (IoT) uptake brought a paradigm shift in application deployment. Indeed, IoT applications are not centralized in cloud data centers, but the computation and storage are moved close to the consumers, creating a computing continuum between the edge of the network and the cloud. This paradigm shift is called fog computing, a concept introduced by Cisco in 2012. Scheduling applications in this decentralized, heterogeneous, and resource-constrained environment is challenging. The task scheduling problem in fog computing has been widely explored and addressed using many approaches, from traditional operational research to heuristics and machine learning. This paper aims to analyze the literature on task scheduling in fog computing published in the last five years to classify the criteria used for decision-making and the technique used to solve the task scheduling problem. We propose a taxonomy of task scheduling algorithms, and we identify the research gaps and challenges.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.