{"title":"一般延迟塞尔科夫-施纳肯伯格反应-扩散系统中的分岔","authors":"Yanqiu Li, Lei Zhang","doi":"10.1142/s021812742350195x","DOIUrl":null,"url":null,"abstract":"The dynamics of a delay Sel’kov–Schnakenberg reaction–diffusion system are explored. The existence and the occurrence conditions of the Turing and the Hopf bifurcations of the system are found by taking the diffusion coefficient and the time delay as the bifurcation parameters. Based on that, the existence of codimension-2 bifurcations including Turing–Turing, Hopf–Hopf and Turing–Hopf bifurcations are given. Using the center manifold theory and the normal form method, the universal unfolding of the Turing–Hopf bifurcation at the positive constant steady-state is demonstrated. According to the universal unfolding, a Turing–Hopf bifurcation diagram is shown under a set of specific parameters. Furthermore, in different parameter regions, we find the existence of the spatially inhomogeneous steady-state, the spatially homogeneous and inhomogeneous periodic solutions. Discretization of time and space visualizes these spatio-temporal solutions. In particular, near the critical point of Hopf–Hopf bifurcation, the spatially homogeneous periodic and inhomogeneous quasi-periodic solutions are found numerically.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":" 27","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcations in a General Delay Sel’kov–Schnakenberg Reaction–Diffusion System\",\"authors\":\"Yanqiu Li, Lei Zhang\",\"doi\":\"10.1142/s021812742350195x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of a delay Sel’kov–Schnakenberg reaction–diffusion system are explored. The existence and the occurrence conditions of the Turing and the Hopf bifurcations of the system are found by taking the diffusion coefficient and the time delay as the bifurcation parameters. Based on that, the existence of codimension-2 bifurcations including Turing–Turing, Hopf–Hopf and Turing–Hopf bifurcations are given. Using the center manifold theory and the normal form method, the universal unfolding of the Turing–Hopf bifurcation at the positive constant steady-state is demonstrated. According to the universal unfolding, a Turing–Hopf bifurcation diagram is shown under a set of specific parameters. Furthermore, in different parameter regions, we find the existence of the spatially inhomogeneous steady-state, the spatially homogeneous and inhomogeneous periodic solutions. Discretization of time and space visualizes these spatio-temporal solutions. In particular, near the critical point of Hopf–Hopf bifurcation, the spatially homogeneous periodic and inhomogeneous quasi-periodic solutions are found numerically.\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\" 27\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021812742350195x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021812742350195x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bifurcations in a General Delay Sel’kov–Schnakenberg Reaction–Diffusion System
The dynamics of a delay Sel’kov–Schnakenberg reaction–diffusion system are explored. The existence and the occurrence conditions of the Turing and the Hopf bifurcations of the system are found by taking the diffusion coefficient and the time delay as the bifurcation parameters. Based on that, the existence of codimension-2 bifurcations including Turing–Turing, Hopf–Hopf and Turing–Hopf bifurcations are given. Using the center manifold theory and the normal form method, the universal unfolding of the Turing–Hopf bifurcation at the positive constant steady-state is demonstrated. According to the universal unfolding, a Turing–Hopf bifurcation diagram is shown under a set of specific parameters. Furthermore, in different parameter regions, we find the existence of the spatially inhomogeneous steady-state, the spatially homogeneous and inhomogeneous periodic solutions. Discretization of time and space visualizes these spatio-temporal solutions. In particular, near the critical point of Hopf–Hopf bifurcation, the spatially homogeneous periodic and inhomogeneous quasi-periodic solutions are found numerically.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.