P. Phung-Van, P. T. Hùng, H. Nguyen-Gia, H. Nguyen-Xuan
{"title":"利用一阶剪切变形理论和无网格法对功能分级三周期极小曲面板进行自由振动分析","authors":"P. Phung-Van, P. T. Hùng, H. Nguyen-Gia, H. Nguyen-Xuan","doi":"10.55579/jaec.202374.441","DOIUrl":null,"url":null,"abstract":"This paper explores a free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory in conjunction with moving Kriging meshfree method. The FG-TPMS plates are modeled the same as porous structures with three different patterns (Primitive, Gyroid, and wrapped package-graph) and six different volume distributions for each pattern. Employing a fitting method based on a two-phase piece-wise function, the mechanical properties of the FGTPMS plates are determined. The governing equations for the FG-TPMS plates are established using the virtual work principle and subsequently solved using the moving Kriging meshfree method. The study encompasses FG-TPMS square and circular plate, examining the natural frequency of the FG-TPMS plates with various length-to-thickness ratios, TPMS types, volume distributions, and boundary conditions.","PeriodicalId":33374,"journal":{"name":"Journal of Advanced Engineering and Computation","volume":" 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory and meshfree method\",\"authors\":\"P. Phung-Van, P. T. Hùng, H. Nguyen-Gia, H. Nguyen-Xuan\",\"doi\":\"10.55579/jaec.202374.441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory in conjunction with moving Kriging meshfree method. The FG-TPMS plates are modeled the same as porous structures with three different patterns (Primitive, Gyroid, and wrapped package-graph) and six different volume distributions for each pattern. Employing a fitting method based on a two-phase piece-wise function, the mechanical properties of the FGTPMS plates are determined. The governing equations for the FG-TPMS plates are established using the virtual work principle and subsequently solved using the moving Kriging meshfree method. The study encompasses FG-TPMS square and circular plate, examining the natural frequency of the FG-TPMS plates with various length-to-thickness ratios, TPMS types, volume distributions, and boundary conditions.\",\"PeriodicalId\":33374,\"journal\":{\"name\":\"Journal of Advanced Engineering and Computation\",\"volume\":\" 26\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Engineering and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55579/jaec.202374.441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Engineering and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55579/jaec.202374.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory and meshfree method
This paper explores a free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory in conjunction with moving Kriging meshfree method. The FG-TPMS plates are modeled the same as porous structures with three different patterns (Primitive, Gyroid, and wrapped package-graph) and six different volume distributions for each pattern. Employing a fitting method based on a two-phase piece-wise function, the mechanical properties of the FGTPMS plates are determined. The governing equations for the FG-TPMS plates are established using the virtual work principle and subsequently solved using the moving Kriging meshfree method. The study encompasses FG-TPMS square and circular plate, examining the natural frequency of the FG-TPMS plates with various length-to-thickness ratios, TPMS types, volume distributions, and boundary conditions.