利用一阶剪切变形理论和无网格法对功能分级三周期极小曲面板进行自由振动分析

P. Phung-Van, P. T. Hùng, H. Nguyen-Gia, H. Nguyen-Xuan
{"title":"利用一阶剪切变形理论和无网格法对功能分级三周期极小曲面板进行自由振动分析","authors":"P. Phung-Van, P. T. Hùng, H. Nguyen-Gia, H. Nguyen-Xuan","doi":"10.55579/jaec.202374.441","DOIUrl":null,"url":null,"abstract":"This paper explores a free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory in conjunction with moving Kriging meshfree method. The FG-TPMS plates are modeled the same as porous structures with three different patterns (Primitive, Gyroid, and wrapped package-graph) and six different volume distributions for each pattern. Employing a fitting method based on a two-phase piece-wise function, the mechanical properties of the FGTPMS plates are determined. The governing equations for the FG-TPMS plates are established using the virtual work principle and subsequently solved using the moving Kriging meshfree method. The study encompasses FG-TPMS square and circular plate, examining the natural frequency of the FG-TPMS plates with various length-to-thickness ratios, TPMS types, volume distributions, and boundary conditions.","PeriodicalId":33374,"journal":{"name":"Journal of Advanced Engineering and Computation","volume":" 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory and meshfree method\",\"authors\":\"P. Phung-Van, P. T. Hùng, H. Nguyen-Gia, H. Nguyen-Xuan\",\"doi\":\"10.55579/jaec.202374.441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory in conjunction with moving Kriging meshfree method. The FG-TPMS plates are modeled the same as porous structures with three different patterns (Primitive, Gyroid, and wrapped package-graph) and six different volume distributions for each pattern. Employing a fitting method based on a two-phase piece-wise function, the mechanical properties of the FGTPMS plates are determined. The governing equations for the FG-TPMS plates are established using the virtual work principle and subsequently solved using the moving Kriging meshfree method. The study encompasses FG-TPMS square and circular plate, examining the natural frequency of the FG-TPMS plates with various length-to-thickness ratios, TPMS types, volume distributions, and boundary conditions.\",\"PeriodicalId\":33374,\"journal\":{\"name\":\"Journal of Advanced Engineering and Computation\",\"volume\":\" 26\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Engineering and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55579/jaec.202374.441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Engineering and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55579/jaec.202374.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用一阶剪切变形理论,结合移动克里金(Kriging)无网格法,探讨了功能分级三周期极小曲面板的自由振动分析。FG-TPMS 板的建模方式与多孔结构相同,有三种不同的模式(原始模式、陀螺模式和包裹包图模式),每种模式有六种不同的体积分布。利用基于两相片断函数的拟合方法,确定了 FGTPMS 板的机械性能。利用虚功原理建立了 FG-TPMS 板的控制方程,随后使用移动 Kriging 无网格法进行了求解。研究涵盖了 FG-TPMS 方形板和圆形板,考察了不同长厚比、TPMS 类型、体积分布和边界条件下 FG-TPMS 板的固有频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory and meshfree method
This paper explores a free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory in conjunction with moving Kriging meshfree method. The FG-TPMS plates are modeled the same as porous structures with three different patterns (Primitive, Gyroid, and wrapped package-graph) and six different volume distributions for each pattern. Employing a fitting method based on a two-phase piece-wise function, the mechanical properties of the FGTPMS plates are determined. The governing equations for the FG-TPMS plates are established using the virtual work principle and subsequently solved using the moving Kriging meshfree method. The study encompasses FG-TPMS square and circular plate, examining the natural frequency of the FG-TPMS plates with various length-to-thickness ratios, TPMS types, volume distributions, and boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信