Quyouyang Gao, Yuquan Zheng, Long Wang, Chengliang Li, Jialun Zhang, Hao Wu, Yanxue Han, Shuo Wang
{"title":"设计用于激光吸收光谱的长光路直接注入式集成腔体","authors":"Quyouyang Gao, Yuquan Zheng, Long Wang, Chengliang Li, Jialun Zhang, Hao Wu, Yanxue Han, Shuo Wang","doi":"10.3390/photonics11010036","DOIUrl":null,"url":null,"abstract":"Trace gas measurement has a wide range of applications needed in industrial, medical, and environmental protection. With the evolution of time, the demand for real-time, sensitivity, and accuracy of gas detection has been increasingly heightened. Off-axis integrated cavity output spectroscopy (OA-ICOS) is an effective method for the high-sensitivity detection of trace gases. It uses an integrated cavity with two highly reflective mirrors to provide a long optical path, which guarantees its high sensitivity. However, as the reflectivity of the mirrors increases, the intensity of the output light decreases, and the signal-to-noise ratio decreases. This contradiction makes it difficult to achieve a long optical path and a high signal-to-noise ratio together. To combat this issue, this paper proposes a type of integrated cavity using a direct-injection method. This structure, under equivalent mirror conditions, can maintain an effective absorption optical path very close to the original off-axis integrated cavity while increasing the output light intensity hundreds of times. This enhancement increases the sensitivity of OA-ICOS.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":" 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a Long Optical Path Direct-Injection-Integrated Cavity for Laser Absorption Spectroscopy\",\"authors\":\"Quyouyang Gao, Yuquan Zheng, Long Wang, Chengliang Li, Jialun Zhang, Hao Wu, Yanxue Han, Shuo Wang\",\"doi\":\"10.3390/photonics11010036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trace gas measurement has a wide range of applications needed in industrial, medical, and environmental protection. With the evolution of time, the demand for real-time, sensitivity, and accuracy of gas detection has been increasingly heightened. Off-axis integrated cavity output spectroscopy (OA-ICOS) is an effective method for the high-sensitivity detection of trace gases. It uses an integrated cavity with two highly reflective mirrors to provide a long optical path, which guarantees its high sensitivity. However, as the reflectivity of the mirrors increases, the intensity of the output light decreases, and the signal-to-noise ratio decreases. This contradiction makes it difficult to achieve a long optical path and a high signal-to-noise ratio together. To combat this issue, this paper proposes a type of integrated cavity using a direct-injection method. This structure, under equivalent mirror conditions, can maintain an effective absorption optical path very close to the original off-axis integrated cavity while increasing the output light intensity hundreds of times. This enhancement increases the sensitivity of OA-ICOS.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010036\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010036","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Designing a Long Optical Path Direct-Injection-Integrated Cavity for Laser Absorption Spectroscopy
Trace gas measurement has a wide range of applications needed in industrial, medical, and environmental protection. With the evolution of time, the demand for real-time, sensitivity, and accuracy of gas detection has been increasingly heightened. Off-axis integrated cavity output spectroscopy (OA-ICOS) is an effective method for the high-sensitivity detection of trace gases. It uses an integrated cavity with two highly reflective mirrors to provide a long optical path, which guarantees its high sensitivity. However, as the reflectivity of the mirrors increases, the intensity of the output light decreases, and the signal-to-noise ratio decreases. This contradiction makes it difficult to achieve a long optical path and a high signal-to-noise ratio together. To combat this issue, this paper proposes a type of integrated cavity using a direct-injection method. This structure, under equivalent mirror conditions, can maintain an effective absorption optical path very close to the original off-axis integrated cavity while increasing the output light intensity hundreds of times. This enhancement increases the sensitivity of OA-ICOS.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.