使用局部搜索方法解决两个多标准机器调度问题

Safanah Faisal Yousif, F. Ali, Karrar Fatah Alshaikhli
{"title":"使用局部搜索方法解决两个多标准机器调度问题","authors":"Safanah Faisal Yousif, F. Ali, Karrar Fatah Alshaikhli","doi":"10.23851/mjs.v34i4.1430","DOIUrl":null,"url":null,"abstract":"In this paper, we have improved solutions for two of the Multi-Criteria Machine Scheduling Problems (MCMSP). These problems are to maximize early jobs time and range of lateness jobs times (1//(E_max,R_L ), and the second problem is maximum tardy jobs time and range of lateness jobs times (1//(T_max,R_L ) in a single machine with Multi-Objective Machine Scheduling Problems (MOMSP) 1//(E_max+R_L )  and 1//(T_max+R_L ) which are derived from the main problems respectively. The Local Search Methods (LSMs), Bees Algorithm (BA), and a Simulated Annealing (SA) are applied to solve all suggested problems. Finally, the experimental results of the LSMs are compared with the results of the Branch and Bound (BAB) method for a reasonable time. These results are ensuring the efficiency of LSMs.","PeriodicalId":7867,"journal":{"name":"Al-Mustansiriyah Journal of Science","volume":" 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Local Search Methods for Solving Two Multi-Criteria Machine Scheduling Problems\",\"authors\":\"Safanah Faisal Yousif, F. Ali, Karrar Fatah Alshaikhli\",\"doi\":\"10.23851/mjs.v34i4.1430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have improved solutions for two of the Multi-Criteria Machine Scheduling Problems (MCMSP). These problems are to maximize early jobs time and range of lateness jobs times (1//(E_max,R_L ), and the second problem is maximum tardy jobs time and range of lateness jobs times (1//(T_max,R_L ) in a single machine with Multi-Objective Machine Scheduling Problems (MOMSP) 1//(E_max+R_L )  and 1//(T_max+R_L ) which are derived from the main problems respectively. The Local Search Methods (LSMs), Bees Algorithm (BA), and a Simulated Annealing (SA) are applied to solve all suggested problems. Finally, the experimental results of the LSMs are compared with the results of the Branch and Bound (BAB) method for a reasonable time. These results are ensuring the efficiency of LSMs.\",\"PeriodicalId\":7867,\"journal\":{\"name\":\"Al-Mustansiriyah Journal of Science\",\"volume\":\" 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Mustansiriyah Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23851/mjs.v34i4.1430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/mjs.v34i4.1430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文改进了两个多标准机器调度问题(MCMSP)的解决方案。这两个问题分别是使提前作业时间和延迟作业时间范围最大化(1/(E_max,R_L )),第二个问题是在单台机器上使延迟作业时间和延迟作业时间范围最大化(1/(T_max,R_L )),多目标机器调度问题(MOMSP)1/(E_max+R_L )和1/(T_max+R_L ),它们分别由主问题衍生而来。应用局部搜索法(LSM)、蜜蜂算法(BA)和模拟退火法(SA)来解决所有建议的问题。最后,将局部搜索法的实验结果与分支与边界法(BAB)的结果进行了合理的时间比较。这些结果确保了 LSM 的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Local Search Methods for Solving Two Multi-Criteria Machine Scheduling Problems
In this paper, we have improved solutions for two of the Multi-Criteria Machine Scheduling Problems (MCMSP). These problems are to maximize early jobs time and range of lateness jobs times (1//(E_max,R_L ), and the second problem is maximum tardy jobs time and range of lateness jobs times (1//(T_max,R_L ) in a single machine with Multi-Objective Machine Scheduling Problems (MOMSP) 1//(E_max+R_L )  and 1//(T_max+R_L ) which are derived from the main problems respectively. The Local Search Methods (LSMs), Bees Algorithm (BA), and a Simulated Annealing (SA) are applied to solve all suggested problems. Finally, the experimental results of the LSMs are compared with the results of the Branch and Bound (BAB) method for a reasonable time. These results are ensuring the efficiency of LSMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信