S. Bonuso, P. Di Gloria, Guido Marseglia, Ramón A. Otón Martínez, Ghazanfar Mehdi, Zubair Ali Shah, A. Ficarella, M. D. De Giorgi
{"title":"研究富含 H2 的条件对源自航空发动机设计的低涡流燃烧器中火焰结构和稳定性的影响","authors":"S. Bonuso, P. Di Gloria, Guido Marseglia, Ramón A. Otón Martínez, Ghazanfar Mehdi, Zubair Ali Shah, A. Ficarella, M. D. De Giorgi","doi":"10.3390/aerospace11010043","DOIUrl":null,"url":null,"abstract":"This study introduces an innovative approach involving the injection of hydrogen into a low-swirl, non-premixed flame, which operates with gaseous fuels derived from an air-blast atomizer designed for aero-engine applications. The aim is to characterize how hydrogen enrichment influences flame structures while maintaining a constant thermal output of 4.6 kW. Using high-speed chemiluminescence imaging, three fueling conditions were compared: the first involved pure methane/air, while the second and third conditions introduced varying levels of hydrogen to an air–methane mixture. The results reveal significant effects of hydrogen enrichment on flame characteristics, including a slightly shorter length and a wider angle attributed to heightened expansion within the Combustion Recirculation Zone. Moreover, the emission of UV light underwent considerable changes, resulting in a shifted luminosity zone and reduced variance. To delve deeper into the underlying mechanisms, the researchers employed Proper Orthogonal Decomposition (POD) and Spectral Proper Orthogonal Decomposition (SPOD) analyses, showing coherent structures and energetic modes within the flames. Hydrogen enrichment led to the development of smaller structures near the nozzle exit, accompanied by longitudinal oscillations and vortex shedding phenomena. These findings contribute to an advanced understanding of hydrogen’s impact on flame characteristics, thereby propelling efforts toward improved flame stability. Additionally, these insights hold significance in the exploration of hydrogen as an alternative energy source with potential environmental benefits.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":" 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation into the Effect of H2-Enriched Conditions on the Structure and Stability of Flames in a Low-Swirl Combustor Derived from Aero-Engine Design\",\"authors\":\"S. Bonuso, P. Di Gloria, Guido Marseglia, Ramón A. Otón Martínez, Ghazanfar Mehdi, Zubair Ali Shah, A. Ficarella, M. D. De Giorgi\",\"doi\":\"10.3390/aerospace11010043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces an innovative approach involving the injection of hydrogen into a low-swirl, non-premixed flame, which operates with gaseous fuels derived from an air-blast atomizer designed for aero-engine applications. The aim is to characterize how hydrogen enrichment influences flame structures while maintaining a constant thermal output of 4.6 kW. Using high-speed chemiluminescence imaging, three fueling conditions were compared: the first involved pure methane/air, while the second and third conditions introduced varying levels of hydrogen to an air–methane mixture. The results reveal significant effects of hydrogen enrichment on flame characteristics, including a slightly shorter length and a wider angle attributed to heightened expansion within the Combustion Recirculation Zone. Moreover, the emission of UV light underwent considerable changes, resulting in a shifted luminosity zone and reduced variance. To delve deeper into the underlying mechanisms, the researchers employed Proper Orthogonal Decomposition (POD) and Spectral Proper Orthogonal Decomposition (SPOD) analyses, showing coherent structures and energetic modes within the flames. Hydrogen enrichment led to the development of smaller structures near the nozzle exit, accompanied by longitudinal oscillations and vortex shedding phenomena. These findings contribute to an advanced understanding of hydrogen’s impact on flame characteristics, thereby propelling efforts toward improved flame stability. Additionally, these insights hold significance in the exploration of hydrogen as an alternative energy source with potential environmental benefits.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11010043\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010043","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Investigation into the Effect of H2-Enriched Conditions on the Structure and Stability of Flames in a Low-Swirl Combustor Derived from Aero-Engine Design
This study introduces an innovative approach involving the injection of hydrogen into a low-swirl, non-premixed flame, which operates with gaseous fuels derived from an air-blast atomizer designed for aero-engine applications. The aim is to characterize how hydrogen enrichment influences flame structures while maintaining a constant thermal output of 4.6 kW. Using high-speed chemiluminescence imaging, three fueling conditions were compared: the first involved pure methane/air, while the second and third conditions introduced varying levels of hydrogen to an air–methane mixture. The results reveal significant effects of hydrogen enrichment on flame characteristics, including a slightly shorter length and a wider angle attributed to heightened expansion within the Combustion Recirculation Zone. Moreover, the emission of UV light underwent considerable changes, resulting in a shifted luminosity zone and reduced variance. To delve deeper into the underlying mechanisms, the researchers employed Proper Orthogonal Decomposition (POD) and Spectral Proper Orthogonal Decomposition (SPOD) analyses, showing coherent structures and energetic modes within the flames. Hydrogen enrichment led to the development of smaller structures near the nozzle exit, accompanied by longitudinal oscillations and vortex shedding phenomena. These findings contribute to an advanced understanding of hydrogen’s impact on flame characteristics, thereby propelling efforts toward improved flame stability. Additionally, these insights hold significance in the exploration of hydrogen as an alternative energy source with potential environmental benefits.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.