用于短波-红外范围生物成像的 NaGdF4:Yb, Er, Tm 上转换纳米粒子:能量转移过程和成分优化研究

IF 2.1 4区 物理与天体物理 Q2 OPTICS
D. Pominova, V. Proydakova, I. Romanishkin, Sergei Kuznetsov, Kirill Linkov, Nataliya Tabachkova, A. Ryabova
{"title":"用于短波-红外范围生物成像的 NaGdF4:Yb, Er, Tm 上转换纳米粒子:能量转移过程和成分优化研究","authors":"D. Pominova, V. Proydakova, I. Romanishkin, Sergei Kuznetsov, Kirill Linkov, Nataliya Tabachkova, A. Ryabova","doi":"10.3390/photonics11010038","DOIUrl":null,"url":null,"abstract":"Upconversion nanoparticles are promising for many applications. For triple-doped nanoparticles (NPs), the luminescence intensity shows a non-linear dependence on the rare-earth ion concentration, making it difficult to obtain bright phosphors with high energy output. We investigated the energy transfer processes in β-NaGdF4:Yb-Er-Tm NPs and considered strategies for increasing the thulium luminescence intensity, in particular, the use of core–shell structures. The luminescence spectra were analyzed in the short-wavelength infrared (SWIR) and visible (VIS) regions. The Er3+ and Tm3+ luminescence lifetimes in the VIS region were measured to study the energy transfer processes between the active ions. The quenching of the Tm3+ luminescence in the SWIR region was observed. However, both Er3+ and Tm3+ luminescence bands were observed in the VIS range. We attribute these effects to energy transfer between Tm3+ 3F4 → 3H6 and Er3+ 4I13/2 → 4I9/2, which occurs due to overlap of Er3+ and Tm3+ luminescence bands, and also to competition between Er3+ and Tm3+ for energy transfer from Yb3+. For core–shell NPs, when Tm3+ and Er3+ are separated into adjacent layers, quenching cannot be avoided, likely due to the mutual diffusion of ions during shell synthesis. The most optimal strategy to obtain luminescence in the SWIR range is to use an inert intermediate shell between the layers containing Tm3+ and Er3+.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":" 41","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NaGdF4:Yb, Er, Tm Upconversion Nanoparticles for Bioimaging in Shortwave-Infrared Range: Study of Energy Transfer Processes and Composition Optimization\",\"authors\":\"D. Pominova, V. Proydakova, I. Romanishkin, Sergei Kuznetsov, Kirill Linkov, Nataliya Tabachkova, A. Ryabova\",\"doi\":\"10.3390/photonics11010038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upconversion nanoparticles are promising for many applications. For triple-doped nanoparticles (NPs), the luminescence intensity shows a non-linear dependence on the rare-earth ion concentration, making it difficult to obtain bright phosphors with high energy output. We investigated the energy transfer processes in β-NaGdF4:Yb-Er-Tm NPs and considered strategies for increasing the thulium luminescence intensity, in particular, the use of core–shell structures. The luminescence spectra were analyzed in the short-wavelength infrared (SWIR) and visible (VIS) regions. The Er3+ and Tm3+ luminescence lifetimes in the VIS region were measured to study the energy transfer processes between the active ions. The quenching of the Tm3+ luminescence in the SWIR region was observed. However, both Er3+ and Tm3+ luminescence bands were observed in the VIS range. We attribute these effects to energy transfer between Tm3+ 3F4 → 3H6 and Er3+ 4I13/2 → 4I9/2, which occurs due to overlap of Er3+ and Tm3+ luminescence bands, and also to competition between Er3+ and Tm3+ for energy transfer from Yb3+. For core–shell NPs, when Tm3+ and Er3+ are separated into adjacent layers, quenching cannot be avoided, likely due to the mutual diffusion of ions during shell synthesis. The most optimal strategy to obtain luminescence in the SWIR range is to use an inert intermediate shell between the layers containing Tm3+ and Er3+.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\" 41\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010038\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010038","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

上转换纳米粒子在许多应用领域都大有可为。对于三掺杂纳米粒子(NPs),发光强度与稀土离子浓度呈非线性关系,因此很难获得高能量输出的明亮荧光粉。我们研究了 β-NaGdF4:Yb-Er-Tm NPs 中的能量转移过程,并考虑了提高铥发光强度的策略,特别是使用核壳结构。在短波红外(SWIR)和可见光(VIS)区域对发光光谱进行了分析。测量了 Er3+ 和 Tm3+ 在可见光区的发光寿命,以研究活性离子之间的能量转移过程。在 SWIR 区域观察到 Tm3+ 发光淬灭。然而,在可见光范围内却观察到了 Er3+ 和 Tm3+ 发光带。我们将这些效应归因于 Tm3+ 3F4 → 3H6 和 Er3+ 4I13/2 → 4I9/2 之间的能量转移,这种能量转移是由于 Er3+ 和 Tm3+ 发光带的重叠而发生的,同时也归因于 Er3+ 和 Tm3+ 之间对来自 Yb3+ 的能量转移的竞争。对于核壳 NPs,当 Tm3+ 和 Er3+ 被分隔到相邻层时,淬灭就无法避免,这可能是由于在壳合成过程中离子的相互扩散造成的。在含有 Tm3+ 和 Er3+ 的层之间使用惰性中间壳是获得 SWIR 范围内发光的最佳策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NaGdF4:Yb, Er, Tm Upconversion Nanoparticles for Bioimaging in Shortwave-Infrared Range: Study of Energy Transfer Processes and Composition Optimization
Upconversion nanoparticles are promising for many applications. For triple-doped nanoparticles (NPs), the luminescence intensity shows a non-linear dependence on the rare-earth ion concentration, making it difficult to obtain bright phosphors with high energy output. We investigated the energy transfer processes in β-NaGdF4:Yb-Er-Tm NPs and considered strategies for increasing the thulium luminescence intensity, in particular, the use of core–shell structures. The luminescence spectra were analyzed in the short-wavelength infrared (SWIR) and visible (VIS) regions. The Er3+ and Tm3+ luminescence lifetimes in the VIS region were measured to study the energy transfer processes between the active ions. The quenching of the Tm3+ luminescence in the SWIR region was observed. However, both Er3+ and Tm3+ luminescence bands were observed in the VIS range. We attribute these effects to energy transfer between Tm3+ 3F4 → 3H6 and Er3+ 4I13/2 → 4I9/2, which occurs due to overlap of Er3+ and Tm3+ luminescence bands, and also to competition between Er3+ and Tm3+ for energy transfer from Yb3+. For core–shell NPs, when Tm3+ and Er3+ are separated into adjacent layers, quenching cannot be avoided, likely due to the mutual diffusion of ions during shell synthesis. The most optimal strategy to obtain luminescence in the SWIR range is to use an inert intermediate shell between the layers containing Tm3+ and Er3+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信