{"title":"阿利效应对异质环境中扩散流行病模型时空行为的影响","authors":"Sattwika Acharya, R. K. Upadhyay, Bapin Mondal","doi":"10.1142/s0218127423501948","DOIUrl":null,"url":null,"abstract":"In the current study, we have formulated an [Formula: see text] epidemic model incorporating the influence of Allee effect on the dynamics of the model system in space and time. During the spread of the disease, inhibition among the susceptible and infected individuals is seen, which is measured using the Crowley–Martin type incidence function. Extensive analysis explores the system’s stability and different bifurcation scenarios, including Hopf, saddle-node, transcritical, and Bogdanov–Takens. We also examine how these bifurcations react to parameter variations within the proposed model. The temporal model has further been extended to a spatial one to investigate the impact of the Allee effect on the formation of patterns for different values of the cross-diffusion coefficient. The well-posedness of the stationary solution and the global stability of the spatial system are derived. Also, the Turing instability, Hopf, and Turing bifurcation are calculated considering the transmission rate as critical parameter. In a heterogeneous environment, the spatial distribution of the susceptible population shows a complex structure with flat tabular surface and a few almost circular holes in surface plots for both strong and weak Allee effects. To further explore the role of Allee effect on pattern development for various cross-diffusion coefficient values, the temporal model has been spatially extended. Additionally, the transmission rate is taken into account while calculating the Turing instability and Hopf and Turing bifurcations. We ran numerical simulations to validate our analytical results for both spatial and nonspatial models. Our current model system can explain the recent occurrence of respiratory distress syndrome in endangered penguin species.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":" 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Allee Effect on the Spatio-Temporal Behavior of a Diffusive Epidemic Model in Heterogenous Environment\",\"authors\":\"Sattwika Acharya, R. K. Upadhyay, Bapin Mondal\",\"doi\":\"10.1142/s0218127423501948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current study, we have formulated an [Formula: see text] epidemic model incorporating the influence of Allee effect on the dynamics of the model system in space and time. During the spread of the disease, inhibition among the susceptible and infected individuals is seen, which is measured using the Crowley–Martin type incidence function. Extensive analysis explores the system’s stability and different bifurcation scenarios, including Hopf, saddle-node, transcritical, and Bogdanov–Takens. We also examine how these bifurcations react to parameter variations within the proposed model. The temporal model has further been extended to a spatial one to investigate the impact of the Allee effect on the formation of patterns for different values of the cross-diffusion coefficient. The well-posedness of the stationary solution and the global stability of the spatial system are derived. Also, the Turing instability, Hopf, and Turing bifurcation are calculated considering the transmission rate as critical parameter. In a heterogeneous environment, the spatial distribution of the susceptible population shows a complex structure with flat tabular surface and a few almost circular holes in surface plots for both strong and weak Allee effects. To further explore the role of Allee effect on pattern development for various cross-diffusion coefficient values, the temporal model has been spatially extended. Additionally, the transmission rate is taken into account while calculating the Turing instability and Hopf and Turing bifurcations. We ran numerical simulations to validate our analytical results for both spatial and nonspatial models. Our current model system can explain the recent occurrence of respiratory distress syndrome in endangered penguin species.\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423501948\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501948","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Impact of Allee Effect on the Spatio-Temporal Behavior of a Diffusive Epidemic Model in Heterogenous Environment
In the current study, we have formulated an [Formula: see text] epidemic model incorporating the influence of Allee effect on the dynamics of the model system in space and time. During the spread of the disease, inhibition among the susceptible and infected individuals is seen, which is measured using the Crowley–Martin type incidence function. Extensive analysis explores the system’s stability and different bifurcation scenarios, including Hopf, saddle-node, transcritical, and Bogdanov–Takens. We also examine how these bifurcations react to parameter variations within the proposed model. The temporal model has further been extended to a spatial one to investigate the impact of the Allee effect on the formation of patterns for different values of the cross-diffusion coefficient. The well-posedness of the stationary solution and the global stability of the spatial system are derived. Also, the Turing instability, Hopf, and Turing bifurcation are calculated considering the transmission rate as critical parameter. In a heterogeneous environment, the spatial distribution of the susceptible population shows a complex structure with flat tabular surface and a few almost circular holes in surface plots for both strong and weak Allee effects. To further explore the role of Allee effect on pattern development for various cross-diffusion coefficient values, the temporal model has been spatially extended. Additionally, the transmission rate is taken into account while calculating the Turing instability and Hopf and Turing bifurcations. We ran numerical simulations to validate our analytical results for both spatial and nonspatial models. Our current model system can explain the recent occurrence of respiratory distress syndrome in endangered penguin species.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.