基于 LSTM 的树莓派心率预测,用于便携式健康监测

Ahmad Foresta Azhar Zen, Eko Sakti Pramukantoro, Kasyful Amron, Viera Wardhani, Putri Annisa Kamila
{"title":"基于 LSTM 的树莓派心率预测,用于便携式健康监测","authors":"Ahmad Foresta Azhar Zen, Eko Sakti Pramukantoro, Kasyful Amron, Viera Wardhani, Putri Annisa Kamila","doi":"10.25126/jtiik.1078015","DOIUrl":null,"url":null,"abstract":"Penyakit kardiovaskular atau cardiovascular disease (CVD) menduduki peringkat teratas penyebab kematian di dunia. Diperkirakan sekitar 17,9 juta jiwa meninggal akibat CVD pada tahun 2019, yang menyumbang sebanyak 32% dari seluruh kematian global. Penting untuk mendeteksi kelainan pada jantung sedini mungkin untuk mencegah kematian karena CVD. Peningkatan kesadaran tentang pentingnya pemantauan kesehatan diri sendiri telah mendorong perkembangan teknologi pemantauan kesehatan portabel. Dalam penelitian ini, kami mengusulkan model prediksi detak jantung berbasis Long Short-Term Memory (LSTM) dengan menggunakan fitur RR-Interval dan mengimplementasikan pada perangkat Raspberry Pi. Model berbasis LSTM merupakan salah satu jenis arsitektur jaringan saraf tiruan yang mampu menangani data berurutan dengan baik, sehingga sangat cocok untuk pemantauan dan prediksi detak jantung yang bersifat sekuensial. Raspberry Pi dikenal karena ukurannya yang kecil, harga yang terjangkau, kinerja yang andal, dan efisiensi komputasi yang baik. Raspberry Pi juga memungkinkan integrasi yang mudah dengan berbagai sensor, menjadikannya solusi yang cocok untuk pemantauan kesehatan yang portabel. Hasil penelitian ini menunjukkan bahwa model klasifikasi yang diusulkan memiliki kinerja yang baik dengan tingkat akurasi mencapai 96,66%. Implementasi inferensi pada Raspberry Pi juga menunjukkan performa yang baik, dengan waktu 4,82 detik untuk melakukan inferensi data sepanjang 100 detik, serta penggunaan memori sebesar 134,8MB.   Abstract Cardiovascular diseases (CVDs) rank as the top cause of global death. An estimated 17.9 million people succumbed to CVDs in 2019, constituting 32% of all global deaths. Detecting heart abnormalities as early as possible is crucial to prevent CVD-related fatalities. The growing awareness of the importance of self-health monitoring has driven the development of portable health monitoring technologies. In this study, we propose a Long Short-Term Memory (LSTM)-based heart beat prediction model using RR-Interval as features  and implement it on the Raspberry Pi device. LSTM models are a type of artificial neural network architecture known for their ability to handle sequential data effectively, making them highly suitable for sequential heart rate monitoring and prediction. The Raspberry Pi is renowned for its compact size, affordability, reliable performance, and efficient computational capabilities. It also enables seamless integration with various sensors, making it an ideal solution for portable health monitoring. This research show that the proposed classification model performs well, achieving an accuracy rate of 96.66%. The implementation of inference on the Raspberry Pi also demonstrates good performance, with an average inference time of 4.82 seconds for processing 100 data points and a memory usage of 134.8MB.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediksi Detak Jantung Berbasis LSTM pada Raspberry Pi untuk Pemantauan Kesehatan Portabel\",\"authors\":\"Ahmad Foresta Azhar Zen, Eko Sakti Pramukantoro, Kasyful Amron, Viera Wardhani, Putri Annisa Kamila\",\"doi\":\"10.25126/jtiik.1078015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penyakit kardiovaskular atau cardiovascular disease (CVD) menduduki peringkat teratas penyebab kematian di dunia. Diperkirakan sekitar 17,9 juta jiwa meninggal akibat CVD pada tahun 2019, yang menyumbang sebanyak 32% dari seluruh kematian global. Penting untuk mendeteksi kelainan pada jantung sedini mungkin untuk mencegah kematian karena CVD. Peningkatan kesadaran tentang pentingnya pemantauan kesehatan diri sendiri telah mendorong perkembangan teknologi pemantauan kesehatan portabel. Dalam penelitian ini, kami mengusulkan model prediksi detak jantung berbasis Long Short-Term Memory (LSTM) dengan menggunakan fitur RR-Interval dan mengimplementasikan pada perangkat Raspberry Pi. Model berbasis LSTM merupakan salah satu jenis arsitektur jaringan saraf tiruan yang mampu menangani data berurutan dengan baik, sehingga sangat cocok untuk pemantauan dan prediksi detak jantung yang bersifat sekuensial. Raspberry Pi dikenal karena ukurannya yang kecil, harga yang terjangkau, kinerja yang andal, dan efisiensi komputasi yang baik. Raspberry Pi juga memungkinkan integrasi yang mudah dengan berbagai sensor, menjadikannya solusi yang cocok untuk pemantauan kesehatan yang portabel. Hasil penelitian ini menunjukkan bahwa model klasifikasi yang diusulkan memiliki kinerja yang baik dengan tingkat akurasi mencapai 96,66%. Implementasi inferensi pada Raspberry Pi juga menunjukkan performa yang baik, dengan waktu 4,82 detik untuk melakukan inferensi data sepanjang 100 detik, serta penggunaan memori sebesar 134,8MB.   Abstract Cardiovascular diseases (CVDs) rank as the top cause of global death. An estimated 17.9 million people succumbed to CVDs in 2019, constituting 32% of all global deaths. Detecting heart abnormalities as early as possible is crucial to prevent CVD-related fatalities. The growing awareness of the importance of self-health monitoring has driven the development of portable health monitoring technologies. In this study, we propose a Long Short-Term Memory (LSTM)-based heart beat prediction model using RR-Interval as features  and implement it on the Raspberry Pi device. LSTM models are a type of artificial neural network architecture known for their ability to handle sequential data effectively, making them highly suitable for sequential heart rate monitoring and prediction. The Raspberry Pi is renowned for its compact size, affordability, reliable performance, and efficient computational capabilities. It also enables seamless integration with various sensors, making it an ideal solution for portable health monitoring. This research show that the proposed classification model performs well, achieving an accuracy rate of 96.66%. The implementation of inference on the Raspberry Pi also demonstrates good performance, with an average inference time of 4.82 seconds for processing 100 data points and a memory usage of 134.8MB.\",\"PeriodicalId\":32501,\"journal\":{\"name\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"volume\":\" 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25126/jtiik.1078015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.1078015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病(CVD)是世界上最主要的死亡原因。据估计,2019 年将有 1790 万人死于心血管疾病,占全球死亡总人数的 32%。尽早发现心脏异常对预防心血管疾病导致的死亡非常重要。人们越来越意识到自我健康监测的重要性,这推动了便携式健康监测技术的发展。在本研究中,我们提出了一种基于长短期记忆(LSTM)的心率预测模型,该模型使用了RR-Interval特征,并在Raspberry Pi设备上实现。基于 LSTM 的模型是一种人工神经网络架构,能很好地处理连续数据,因此适用于连续心率监测和预测。树莓派以体积小、价格实惠、性能可靠、计算效率高而著称。它还可以轻松集成各种传感器,是便携式健康监测的合适解决方案。研究结果表明,所提出的分类模型性能良好,准确率高达 96.66%。在 Raspberry Pi 上实现的推理也显示出良好的性能,执行 100 秒的数据推理耗时 4.82 秒,内存使用量为 134.8MB。 摘要 心血管疾病(CVD)是导致全球死亡的首要原因。据估计,2019 年将有 1790 万人死于心血管疾病,占全球死亡总人数的 32%。尽早发现心脏异常对预防心血管疾病相关死亡至关重要。人们越来越意识到自我健康监测的重要性,这推动了便携式健康监测技术的发展。在本研究中,我们提出了一种基于长短期记忆(LSTM)的心跳预测模型,以RR-Interval为特征,并在Raspberry Pi设备上实现了该模型。LSTM 模型是一种人工神经网络架构,因其能有效处理顺序数据而闻名,因此非常适合顺序心率监测和预测。Raspberry Pi 以其小巧、经济、可靠的性能和高效的计算能力而闻名。它还能与各种传感器无缝集成,是便携式健康监测的理想解决方案。这项研究表明,所提出的分类模型性能良好,准确率达到 96.66%。在树莓派(Raspberry Pi)上实现的推理也表现出色,处理 100 个数据点的平均推理时间为 4.82 秒,内存使用量为 134.8MB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediksi Detak Jantung Berbasis LSTM pada Raspberry Pi untuk Pemantauan Kesehatan Portabel
Penyakit kardiovaskular atau cardiovascular disease (CVD) menduduki peringkat teratas penyebab kematian di dunia. Diperkirakan sekitar 17,9 juta jiwa meninggal akibat CVD pada tahun 2019, yang menyumbang sebanyak 32% dari seluruh kematian global. Penting untuk mendeteksi kelainan pada jantung sedini mungkin untuk mencegah kematian karena CVD. Peningkatan kesadaran tentang pentingnya pemantauan kesehatan diri sendiri telah mendorong perkembangan teknologi pemantauan kesehatan portabel. Dalam penelitian ini, kami mengusulkan model prediksi detak jantung berbasis Long Short-Term Memory (LSTM) dengan menggunakan fitur RR-Interval dan mengimplementasikan pada perangkat Raspberry Pi. Model berbasis LSTM merupakan salah satu jenis arsitektur jaringan saraf tiruan yang mampu menangani data berurutan dengan baik, sehingga sangat cocok untuk pemantauan dan prediksi detak jantung yang bersifat sekuensial. Raspberry Pi dikenal karena ukurannya yang kecil, harga yang terjangkau, kinerja yang andal, dan efisiensi komputasi yang baik. Raspberry Pi juga memungkinkan integrasi yang mudah dengan berbagai sensor, menjadikannya solusi yang cocok untuk pemantauan kesehatan yang portabel. Hasil penelitian ini menunjukkan bahwa model klasifikasi yang diusulkan memiliki kinerja yang baik dengan tingkat akurasi mencapai 96,66%. Implementasi inferensi pada Raspberry Pi juga menunjukkan performa yang baik, dengan waktu 4,82 detik untuk melakukan inferensi data sepanjang 100 detik, serta penggunaan memori sebesar 134,8MB.   Abstract Cardiovascular diseases (CVDs) rank as the top cause of global death. An estimated 17.9 million people succumbed to CVDs in 2019, constituting 32% of all global deaths. Detecting heart abnormalities as early as possible is crucial to prevent CVD-related fatalities. The growing awareness of the importance of self-health monitoring has driven the development of portable health monitoring technologies. In this study, we propose a Long Short-Term Memory (LSTM)-based heart beat prediction model using RR-Interval as features  and implement it on the Raspberry Pi device. LSTM models are a type of artificial neural network architecture known for their ability to handle sequential data effectively, making them highly suitable for sequential heart rate monitoring and prediction. The Raspberry Pi is renowned for its compact size, affordability, reliable performance, and efficient computational capabilities. It also enables seamless integration with various sensors, making it an ideal solution for portable health monitoring. This research show that the proposed classification model performs well, achieving an accuracy rate of 96.66%. The implementation of inference on the Raspberry Pi also demonstrates good performance, with an average inference time of 4.82 seconds for processing 100 data points and a memory usage of 134.8MB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信