Bogyeom Lee, Hanbyul Song, Catherine Apio, Kyulhee Han, Jiwon Park, Zhe Liu, Hu Xuwen, Taesung Park
{"title":"COVID-19 疫苗接种效果减弱分析","authors":"Bogyeom Lee, Hanbyul Song, Catherine Apio, Kyulhee Han, Jiwon Park, Zhe Liu, Hu Xuwen, Taesung Park","doi":"10.5808/gi.23088","DOIUrl":null,"url":null,"abstract":"Vaccine development is one of the key efforts to control the spread of coronavirus disease 2019 (COVID-19). However, it has become apparent that the immunity acquired through vaccination is not permanent, known as the waning effect. Therefore, monitoring the proportion of the population with immunity is essential to improve the forecasting of future waves of the pandemic. Despite this, the impact of the waning effect on forecasting accuracies has not been extensively studied. We proposed a method for the estimation of the effective immunity (EI) rate which represents the waning effect by integrating the second and booster doses of COVID-19 vaccines. The EI rate, with different periods to the onset of the waning effect, was incorporated into three statistical models and two machine learning models. Stringency Index, omicron variant BA.5 rate (BA.5 rate), booster shot rate (BSR), and the EI rate were used as covariates and the best covariate combination was selected using prediction error. Among the prediction results, Generalized Additive Model showed the best improvement (decreasing 86% test error) with the EI rate. Furthermore, we confirmed that South Korea’s decision to recommend booster shots after 90 days is reasonable since the waning effect onsets 90 days after the last dose of vaccine which improves the prediction of confirmed cases and deaths. Substituting BSR with EI rate in statistical models not only results in better predictions but also makes it possible to forecast a potential wave and help the local community react proactively to a rapid increase in confirmed cases.","PeriodicalId":197222,"journal":{"name":"Genomics & Informatics","volume":" 953","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of the waning effect of COVID-19 vaccinations\",\"authors\":\"Bogyeom Lee, Hanbyul Song, Catherine Apio, Kyulhee Han, Jiwon Park, Zhe Liu, Hu Xuwen, Taesung Park\",\"doi\":\"10.5808/gi.23088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vaccine development is one of the key efforts to control the spread of coronavirus disease 2019 (COVID-19). However, it has become apparent that the immunity acquired through vaccination is not permanent, known as the waning effect. Therefore, monitoring the proportion of the population with immunity is essential to improve the forecasting of future waves of the pandemic. Despite this, the impact of the waning effect on forecasting accuracies has not been extensively studied. We proposed a method for the estimation of the effective immunity (EI) rate which represents the waning effect by integrating the second and booster doses of COVID-19 vaccines. The EI rate, with different periods to the onset of the waning effect, was incorporated into three statistical models and two machine learning models. Stringency Index, omicron variant BA.5 rate (BA.5 rate), booster shot rate (BSR), and the EI rate were used as covariates and the best covariate combination was selected using prediction error. Among the prediction results, Generalized Additive Model showed the best improvement (decreasing 86% test error) with the EI rate. Furthermore, we confirmed that South Korea’s decision to recommend booster shots after 90 days is reasonable since the waning effect onsets 90 days after the last dose of vaccine which improves the prediction of confirmed cases and deaths. Substituting BSR with EI rate in statistical models not only results in better predictions but also makes it possible to forecast a potential wave and help the local community react proactively to a rapid increase in confirmed cases.\",\"PeriodicalId\":197222,\"journal\":{\"name\":\"Genomics & Informatics\",\"volume\":\" 953\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5808/gi.23088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.23088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An analysis of the waning effect of COVID-19 vaccinations
Vaccine development is one of the key efforts to control the spread of coronavirus disease 2019 (COVID-19). However, it has become apparent that the immunity acquired through vaccination is not permanent, known as the waning effect. Therefore, monitoring the proportion of the population with immunity is essential to improve the forecasting of future waves of the pandemic. Despite this, the impact of the waning effect on forecasting accuracies has not been extensively studied. We proposed a method for the estimation of the effective immunity (EI) rate which represents the waning effect by integrating the second and booster doses of COVID-19 vaccines. The EI rate, with different periods to the onset of the waning effect, was incorporated into three statistical models and two machine learning models. Stringency Index, omicron variant BA.5 rate (BA.5 rate), booster shot rate (BSR), and the EI rate were used as covariates and the best covariate combination was selected using prediction error. Among the prediction results, Generalized Additive Model showed the best improvement (decreasing 86% test error) with the EI rate. Furthermore, we confirmed that South Korea’s decision to recommend booster shots after 90 days is reasonable since the waning effect onsets 90 days after the last dose of vaccine which improves the prediction of confirmed cases and deaths. Substituting BSR with EI rate in statistical models not only results in better predictions but also makes it possible to forecast a potential wave and help the local community react proactively to a rapid increase in confirmed cases.