{"title":"倾斜辐射入射谐振结构增强了太赫兹信号的博尔测检测能力","authors":"P. Nikiforova, A. Bogatskaya, Alexander Popov","doi":"10.3390/photonics11010042","DOIUrl":null,"url":null,"abstract":"In this work, we consider the possibility of enhancing terahertz bolometric detection efficiency using resonant structures in the case of an inclined incidence of radiation. The structures are made of a sequence of doped and undoped semiconductors, including epsilon-near-zero areas. Undoped regions act as electromagnetic resonators, thus ensuring resonant signal penetration through the opaque (doped) regions of the structure. A set of epsilon-near-zero areas can ensure substantial enhancements to the electric field in the material. In the doped regions, absorption occurs. The structure described above can provide efficient resonant energy absorption for a wide range of angles of incidence. The numerical calculations based on the solution of the Helmholtz equation have shown that the studied resonant structures ensure the absorption of up to 50% of the incident radiation energy for a 60-degree incidence.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":" 17","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Bolometric Detection of THz Signals by a Resonant Structure for Inclined Radiation Incidence\",\"authors\":\"P. Nikiforova, A. Bogatskaya, Alexander Popov\",\"doi\":\"10.3390/photonics11010042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the possibility of enhancing terahertz bolometric detection efficiency using resonant structures in the case of an inclined incidence of radiation. The structures are made of a sequence of doped and undoped semiconductors, including epsilon-near-zero areas. Undoped regions act as electromagnetic resonators, thus ensuring resonant signal penetration through the opaque (doped) regions of the structure. A set of epsilon-near-zero areas can ensure substantial enhancements to the electric field in the material. In the doped regions, absorption occurs. The structure described above can provide efficient resonant energy absorption for a wide range of angles of incidence. The numerical calculations based on the solution of the Helmholtz equation have shown that the studied resonant structures ensure the absorption of up to 50% of the incident radiation energy for a 60-degree incidence.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\" 17\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010042\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010042","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Enhanced Bolometric Detection of THz Signals by a Resonant Structure for Inclined Radiation Incidence
In this work, we consider the possibility of enhancing terahertz bolometric detection efficiency using resonant structures in the case of an inclined incidence of radiation. The structures are made of a sequence of doped and undoped semiconductors, including epsilon-near-zero areas. Undoped regions act as electromagnetic resonators, thus ensuring resonant signal penetration through the opaque (doped) regions of the structure. A set of epsilon-near-zero areas can ensure substantial enhancements to the electric field in the material. In the doped regions, absorption occurs. The structure described above can provide efficient resonant energy absorption for a wide range of angles of incidence. The numerical calculations based on the solution of the Helmholtz equation have shown that the studied resonant structures ensure the absorption of up to 50% of the incident radiation energy for a 60-degree incidence.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.