IMDB 评论数据集的情感分析

Shubham Kumar Singh, Neetu Singla
{"title":"IMDB 评论数据集的情感分析","authors":"Shubham Kumar Singh, Neetu Singla","doi":"10.57159/gadl.jcmm.2.6.230108","DOIUrl":null,"url":null,"abstract":"A computational method known as sentiment analysis is employed to ascertain the emotional undertone or attitude of a text document, such as a review, tweet, or news story. Using machine learning models, deep neural network models, and natural language processing, the method entails examining the text to determine whether it expresses positive or negative sentiment. In this study, models like Naive Bayes, Logistic Regression, LSTM, LSVM, Decision tree, and BiLSTM are utilized to conduct a sentiment analysis (SA) study on the IMDB dataset. The goal of the investigation is to evaluate how well these models perform in retrospect on movie reviews, categorizing them as positive or negative. The study investigates the effects of data pre-processing methods and hyperparameter tuning on the models’ accuracy. The final results demonstrate that the BiLSTM model outperforms the other models in terms of recall, precision, and accuracy, followed by the LSTM, Logistic Regression, LSVM, Decision Tree, and Naive Bayes models. The research emphasizes the potential of deep learning models—in particular, BiLSTM in sentiment analysis tasks, as well as the significance of hyper-parameter tuning and pre-processing methods in achieving high accuracy.","PeriodicalId":372188,"journal":{"name":"Journal of Computers, Mechanical and Management","volume":"112 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis on IMDB Review Dataset\",\"authors\":\"Shubham Kumar Singh, Neetu Singla\",\"doi\":\"10.57159/gadl.jcmm.2.6.230108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational method known as sentiment analysis is employed to ascertain the emotional undertone or attitude of a text document, such as a review, tweet, or news story. Using machine learning models, deep neural network models, and natural language processing, the method entails examining the text to determine whether it expresses positive or negative sentiment. In this study, models like Naive Bayes, Logistic Regression, LSTM, LSVM, Decision tree, and BiLSTM are utilized to conduct a sentiment analysis (SA) study on the IMDB dataset. The goal of the investigation is to evaluate how well these models perform in retrospect on movie reviews, categorizing them as positive or negative. The study investigates the effects of data pre-processing methods and hyperparameter tuning on the models’ accuracy. The final results demonstrate that the BiLSTM model outperforms the other models in terms of recall, precision, and accuracy, followed by the LSTM, Logistic Regression, LSVM, Decision Tree, and Naive Bayes models. The research emphasizes the potential of deep learning models—in particular, BiLSTM in sentiment analysis tasks, as well as the significance of hyper-parameter tuning and pre-processing methods in achieving high accuracy.\",\"PeriodicalId\":372188,\"journal\":{\"name\":\"Journal of Computers, Mechanical and Management\",\"volume\":\"112 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computers, Mechanical and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57159/gadl.jcmm.2.6.230108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computers, Mechanical and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57159/gadl.jcmm.2.6.230108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析是一种计算方法,用于确定评论、推特或新闻报道等文本文档的情感基调或态度。通过使用机器学习模型、深度神经网络模型和自然语言处理,该方法需要对文本进行检查,以确定其表达的是积极情感还是消极情感。本研究利用 Naive Bayes、Logistic Regression、LSTM、LSVM、决策树和 BiLSTM 等模型对 IMDB 数据集进行了情感分析(SA)研究。调查的目的是评估这些模型在回顾电影评论时的表现,并将其分为正面和负面。研究调查了数据预处理方法和超参数调整对模型准确性的影响。最终结果表明,BiLSTM 模型在召回率、精确度和准确度方面优于其他模型,其次是 LSTM、逻辑回归、LSVM、决策树和 Naive Bayes 模型。研究强调了深度学习模型(尤其是 BiLSTM)在情感分析任务中的潜力,以及超参数调整和预处理方法在实现高准确率方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis on IMDB Review Dataset
A computational method known as sentiment analysis is employed to ascertain the emotional undertone or attitude of a text document, such as a review, tweet, or news story. Using machine learning models, deep neural network models, and natural language processing, the method entails examining the text to determine whether it expresses positive or negative sentiment. In this study, models like Naive Bayes, Logistic Regression, LSTM, LSVM, Decision tree, and BiLSTM are utilized to conduct a sentiment analysis (SA) study on the IMDB dataset. The goal of the investigation is to evaluate how well these models perform in retrospect on movie reviews, categorizing them as positive or negative. The study investigates the effects of data pre-processing methods and hyperparameter tuning on the models’ accuracy. The final results demonstrate that the BiLSTM model outperforms the other models in terms of recall, precision, and accuracy, followed by the LSTM, Logistic Regression, LSVM, Decision Tree, and Naive Bayes models. The research emphasizes the potential of deep learning models—in particular, BiLSTM in sentiment analysis tasks, as well as the significance of hyper-parameter tuning and pre-processing methods in achieving high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信